This report should be cited as:

Disclaimer:
The information and opinions provided in the Report have been prepared for the Client and its specified purposes. Accordingly, any person other than the Client, uses the information and opinions in this report entirely at their own risk. The Report has been provided in good faith and on the basis that reasonable endeavours have been made to be accurate and not misleading and to exercise reasonable care, skill and judgment in providing such information and opinions.

Neither The University of Waikato, nor any of its employees, officers, contractors, agents or other persons acting on its behalf or under its control accepts any responsibility or liability to third parties in respect of any information or opinions provided in this Report.

Reviewed by: Approved for release by

Brendan Hicks John Tyrrell
School of Science Environmental Research Institute
University of Waikato University of Waikato
Hamilton, New Zealand Hamilton, New Zealand
Executive Summary
Continuous alum dosing of the Waitangi Soda Springs at Lake Rotoehu commenced in 2010 to reduce inflows of dissolved reactive phosphorus to Lake Rotoehu. Analyses of bioaccumulation in the tissues of kōura and goldfish from Lake Rotoehu were undertaken on animals collected in November 2015 to determine the bioavailability and bioaccumulation of aluminium to satisfy annual resource consent conditions 11.7 and 11.8 of resource consent 65966. Comparative analyses were undertaken on goldfish collected from Lake Rotorua and compared to values obtained from goldfish and kōura collected from Lakes Rotoehu, Rotorua and Rotoiti in 2013. Lake Rotoehu kōura and goldfish showed slightly elevated aluminium concentrations in the gills indicating enhanced exposure to aluminium as a result of alum discharge from the Waitangi Soda Springs but little evidence for significant bioaccumulation in tissues.
Contents
Executive Summary .. 2
Contents ... 3
Introduction .. 4
Methods ... 5
Sampling ... 5
Sample analysis .. 5
Results .. 6
Total tissue aluminium ... 6
Conclusions ... 7
References .. 8
Introduction
The Lake Rotoehu Action Plan (Bay of Plenty Regional Council, 2007) proposed to lower the trophic level index (TLI) of Lake Rotoehu from 4.6 to 3.9 by reducing internal and catchment-derived nutrients (N and P). The Action Plan proposed a wide variety of actions to improve water quality and, following the successful establishment of continuous alum dosing plants on other streams in the Rotorua lakes district, an alum dosing plant was subsequently constructed in 2010 on one of the major inflows to the lake, the geothermal Waitangi Soda Springs. Alum dosing of this inflow is estimated to reduce dissolved phosphorus inputs to Lake Rotoehu by up to 0.7 tonnes per annum.

Alum dosing of the Utuhina Stream inflow to Lake Rotorua began on a trial basis in 2006 and the Bay of Plenty Regional Council granted a resource consent in November 2008 for the continuation of alum dosing until 2018. The Utuhina Stream carries an estimated 7.6 tonnes of P into Lake Rotorua each year, of which approximately 2 tonnes is in the form of dissolved reactive phosphorus (DRP). The Puarenga Stream discharges a similar annual phosphorus load to Lake Rotorua and continuous alum dosing began on the Puarenga Stream in early 2010. The Puarenga Stream discharges into Sulphur Bay, a continuously active geothermal area and a designated wildlife reserve on the southern shores of Lake Rotorua. Landman & Ling (2009) measured bioaccumulation of aluminium in a variety of Lake Rotorua biota to provide baseline data on natural aluminium bioavailability prior to the commencement of alum dosing and subsequent studies have assessed the potential for aluminium bioaccumulation as a result of alum dosing of both the Utuhina and Puarenga streams (Ling 2013a, Ling 2013b). An initial assessment of aluminium bioavailability and bioaccumulation in goldfish and kōura from Lake Rotoehu was undertaken by Ling (2015), however, because no baseline assessments of aluminium bioaccumulation were undertaken on biota from Lake Rotoehu prior to the commencement of alum dosing, comparisons were made with the same organisms sampled from other lakes in the region (Lakes Rotorua and Rotoiti), albeit that the Rotorua lakes may differ substantially from one another with respect to water and sediment chemistry due to the differing influences of catchment, groundwater and geothermally derived inflows. This report provides data on aluminium
concentrations in adult kōura and goldfish from Lake Rotoehu in 2015 for comparison with the data collected in 2013. This study aimed to assess whether alum dosing of the Waitangi Soda Springs is providing bioavailable aluminium to lake macrobiota resulting in bioaccumulation and potential toxicity.

Methods

Sampling
Samples of frozen adult kōura (Paranephrops planifrons) and goldfish (Carassius auratus) from Lake Rotoehu and Waitangi Soda Springs were collected and supplied by Ian Kusabs together with adult kōura collected from Lakes Rotorua and Rotoiti in November 2015. Additional adult goldfish for comparative purposes were obtained from the Ohau Channel (Lake Rotorua outflow) by boat electrofishing in January 2016.

Sample analysis
Samples of liver (goldfish) or hepatopancreas (kōura), flesh and gills were carefully dissected using acid-washed instruments. A suite of 28 elements was measured in samples based on established methods (USEPA, 1987). Samples were dried at 60°C for 24 h, weighed to the nearest 0.0001 g and digested using tetramethylammonium hydroxide, heat and mixing. The colloidal suspension was then partially oxidized by the addition of hydrogen peroxide and the metals were solubilised by acidification with nitric acid and heating. Samples were diluted and filtered prior to analysis by inductively-coupled plasma mass spectrometry (Waikato Mass Spectrometry Facility, School of Science, University of Waikato, Hamilton, NZ; http://www.mass-spec.co.nz/). All tissue element concentrations were determined on a dry weight basis. Method blanks and matrix certified reference material standards (DOLT and DORM; Canadian Research Council) were run in parallel with all samples. Only results for aluminium are presented here.
Results

Total tissue aluminium
Values for total tissue aluminium are presented in Figures 1 and 2. Tissue aluminium was slightly elevated in flesh and hepatopancreas of kōura from Lake Rotoehu in 2015 compared with 2013, however, concentrations in gills were slightly lower in 2015.

No significant differences in flesh concentration were found when comparing goldfish from lakes Rotoehu and Rotorua in 2015, however, aluminium was significantly higher in the gills of goldfish from Lake Rotoehu and slightly greater than in fish sampled in 2013.

![Figure 1](image_url)

Figure 1. Aluminium concentrations in tissues of kōura from lakes Rotoehu, Rotoiti and Rotorua in 2013 and Lake Rotoehu in 2015. Transverse bars are geometric means with 95% confidence intervals.
Figure 2. Aluminium concentrations in tissues of goldfish from lakes Rotoehu, Rotoiti and Rotorua in 2013 and Lakes Rotoehu and Rotorua in 2015. Transverse bars are geometric means with 95% confidence intervals.

Conclusions

Higher levels of aluminium in the gills of both kōura and goldfish from Lake Rotoehu compared with other lakes are evidence of greater water-borne exposure to this element, possibly as a result of the continuous addition of alum to the Waitangi Soda Springs inflow. Aluminium concentrations in the gills of Lake Rotoehu goldfish were marginally higher in 2015 compared with 2013, while concentrations in the gills of kōura were slightly lower. Because the gills are the main site of uptake for water-derived aluminium uptake in fish, concentrations in gill tissue are generally much higher than any internal tissue (Howells et al. 1990) although long-term studies on aluminium bioaccumulation are rare. The relatively greater concentrations in goldfish livers is unusual in fish. Common bully downstream of the alum dosing station on the Utuhina Stream accumulated around 8-fold greater aluminium in the gills compared with the liver (Ling 2013b), and during short-term (48 hours) exposures, aluminium accumulated in the gills of common carp was approximately ten-fold greater than in visceral tissues (Muramoto 1981).

No significant differences in the average concentration of aluminium were found in internal tissues of either kōura or goldfish when compared with the same species sampled from either one or both of the comparison lakes in 2013 or 2015. Although the Waitangi Soda Springs alum dosing would appear to elevate the bioavailability of aluminium as indicated by
s slight elevation of aluminium accumulation in the gills of biota, internal body burdens of aluminium appear little different compared with the same species in other lakes.

References

