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Abstract 

We demonstrate that the conventional OLS and fixed effects estimators of gravity models of 

migration are biased, and that the interpretation of coefficients in the fixed effects model is 

typically incorrect. We present a new best linear unbiased estimator for gravity models of 

migration.  

 

Keywords 

gross migration flows 

gravity model 

New Zealand 

 

 

JEL Classification 
 

O15; R23 

 

 

 

 
Acknowledgements 

 This research was funded by the Ministry of Business, Innovation and Employment (Grant numbers 

UOWX1404 and MAUX1206) and by the Royal Society of New Zealand Marsden Fund (Grant number 

UOW1302). The authors are grateful to Sialupapu Siameja and Tobias Dean for excellent research 

assistance. The usual disclaimer applies. 

 

 

  



 

 

3 

 

1. INTRODUCTION 
 

Greater availability of temporal gross flow data in many types of spatial interaction (trade, 

migration, tourism, etc.) in recent years has led to fixed effects (FE) panel models becoming 

the standard approach for the estimation of gravity models, following Anderson and van 

Wincoop (2003). This preference for FE models can be attributed to the estimated coefficients 

in a FE model being consistent and estimable without recourse to the inclusion of multilateral 

resistance terms (Anderson and van Wincoop, 2003). Moreover, when compared with ordinary 

least squares (OLS), FE models eliminate bias arising from standard error clustering when 

some variables apply only to the origin or the destination, and not both (Feenstra, 2004). Peeters 

(2012) has critiqued the OLS and standard FE estimators for their dissimilarity in coefficient 

point estimates, but despite this critique and those of others (e.g., Etzo, 2011), FE gravity 

models continue to be widely used (Lewer and Van den Berg, 2008; Aldashev and Dietz, 2012). 

 

In this paper, we first demonstrate that both the conventional OLS estimator of the 

gravity model and the conventional FE estimator are biased estimators of a spatial interaction 

data generating process (DGP) with origin and destination time invariant effects. We then show 

that comparisons of the population size coefficients between OLS and panel FE gravity models 

are not straightforward. We demonstrate that there should be no expectation that the signs and 

magnitudes of the coefficients on these models be similar. We then introduce a best linear 

unbiased estimator for the FE DGP that can be used in gravity model specifications. We 

illustrate the issue of gravity model estimation with the example of five-yearly internal 

migration flows between regions of New Zealand over the period 1991-2013. 

 
 

2. MODEL SPECIFICATIONS 
 

Although the gravity model can be augmented to include factors that differ between different 

regions and over time (Lewer and Van den Berg, 2008), we assume a specification that is 

expressed in log-linear form and supplemented with origin and destination fixed effects: 

 

ln 𝑀𝑖𝑗,𝑡 = 𝛽1 ln 𝑃𝑖,𝑡 + 𝛽2 ln 𝑃𝑗,𝑡 + 𝛽3 ln 𝐷𝑖𝑗,𝑡 + 𝛾𝑖 + 𝜑𝑗 + 𝜀𝑖𝑗,𝑡;  𝑖 ≠ 𝑗   (1) 

 

where Mij,t is the instantaneous flow or force of gross migration from area i (the origin) to area 

j (the destination) at time t, i,j = 1,2,…R, Pi,t and Pj,t the corresponding population stocks in 

areas i and j respectively, Dij,t is the distance between i and j, and γi and φj are time-invariant 

origin and destination-specific fixed effects. The k (k=1,2,3) and origin and destination fixed 

effects are to be estimated, and 𝜀𝑖𝑗,𝑡  is a white noise error term. If data were available on 

instantaneous flows of migration, the Best Linear Unbiased Estimator (BLUE) of Equation (1) 

is OLS with 2R-1 binary dummy variables representing the origin and destination fixed effects. 

However, considering explicitly the discrete time interval over which migration is measured, 

Equation (1) becomes:  
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ln 𝑀𝑖𝑗,𝑡→(𝑡+1) = 𝛽1 ln 𝑃𝑖,𝑡→(𝑡+1) + 𝛽2 ln 𝑃𝑗,𝑡→(𝑡+1) + 𝛽3 ln 𝐷𝑖𝑗,𝑡→(𝑡+1) + 𝛾𝑖 + 𝜑𝑗 +

𝜀𝑖𝑗,𝑡→(𝑡+1);  𝑖 ≠ 𝑗        (2) 

 

Hence, Equation (1) is the cross-sectional limit case, i.e. t0, of Equation (2). Now 

assume, realistically, that the populations of areas i and j are growing at time-varying growth 

rates. Additionally, we assume that )1(,  ttijD  is time-invariant (Dij). A major source of bias 

now arises from estimating regression Equation (2) with cross-sectional or pooled (t=1,2,…,T) 

migration flow data )1(,  ttijM , in which each migration flow matrix corresponds to a relatively 

long period, while the populations Pit and Pjt are measured at the start of the period. Because 

the size of the origin and destination populations change over the course of the period, the 

estimated coefficients of Equation (2) are biased estimates of Equation (1). The degree of bias 

will be relatively small for annual time-steps, but larger for longer time-steps that are common 

in the migration literature. To reduce this bias, it is convenient to substitute the geometric 

average of the population over the time period, that is: 

 

𝑃𝑘,𝑡→(𝑡+1) = √𝑃𝑘,𝑡𝑃𝑘,(𝑡+1); 𝑘 ∈ {𝑖, 𝑗}       (3) 

 

Now, let  )1(,  ttkg   refer to the time-varying growth rate of population k. Then:  

 

𝑃𝑘,(𝑡+1) = 𝑃𝑘,𝑡(1 + 𝑔𝑘,𝑡→(𝑡+1)); 𝑘 ∈ {𝑖, 𝑗}      (4) 

 

Substituting (4) into (3) and then (3) into (2) and using that for small x, ln (1+x)  x, leads to: 

 

ln 𝑀𝑖𝑗,𝑡→(𝑡+1) = 𝛽1 ln 𝑃𝑖,𝑡 + 𝛽2 ln 𝑃𝑗,𝑡 + 𝛽3 ln 𝐷𝑖𝑗 + 𝛾𝑖 +
1

2
𝛽1𝑔𝑖,𝑡→(𝑡+1) + 𝜑𝑗 +

1

2
𝛽1𝑔𝑗,𝑡→(𝑡+1) + 𝜀𝑖𝑗,𝑡→(𝑡+1);  𝑖 ≠ 𝑗      (5) 

 

We can now compare this with two common estimators of the gravity model. The first is the 

OLS estimator, which assumes the specification: 

 

ln 𝑀𝑖𝑗,𝑡→(𝑡+1) = 𝛽1
∗ ln 𝑃𝑖,𝑡 + 𝛽2

∗ ln 𝑃𝑗,𝑡 + 𝛽3
∗ ln 𝐷𝑖𝑗 + 𝜀𝑖𝑗,𝑡→(𝑡+1)

∗     (6) 

 

and the second is the FE estimator which assumes the specification: 

 

ln 𝑀𝑖𝑗,𝑡→(𝑡+1) = 𝛽1
′ ln 𝑃𝑖,𝑡 + 𝛽2

′ ln 𝑃𝑗,𝑡 + 𝛽3
′ ln 𝐷𝑖𝑗 + 𝛾𝑖

′ + 𝜑𝑗
′ + 𝜀𝑖𝑗,𝑡→(𝑡+1)

′    (7) 
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It is clear that both estimators are biased estimators of the parameters of the “true” DGP 

described by Equation (5). In fact, given that )1(,  ttij , the geometric average of tij,  and 1, tij

is also a white noise error term (in the assumed absence of temporal autocorrelation), it is 

straightforward to directly estimate Equation (5) by restricted least squares (RLS). This simply 

requires the assumption that the time-varying population growth rates are exogenous. This 

assumption is plausible because there is no correlation between gross migration levels and net 

migration or population growth rates, even though gross inward (outward) migration is 

positively (negatively) correlated with net migration, see Vias (2001). Given the assumption of 

white noise errors, the RLS estimator is BLUE (Greene, 2017). 

 

The (log) population at any point in time is a function of the initial population and the 

population growth rate: 

 

ln 𝑃𝑘,𝑡 = ln 𝑃𝑘,0 + ∑ ln(1 + 𝑔𝑘,𝜏→(𝜏+1))
(𝑡−1)
𝜏=0 ; 𝑘 ∈ {𝑖, 𝑗}     (8) 

 

Substituting (8) into (5) gives: 

ln 𝑀𝑖𝑗,𝑡→(𝑡+1) = 𝛽1 ln 𝑃𝑖,0 + 𝛽2 ln 𝑃𝑗,0 + 𝛽3 ln 𝐷𝑖𝑗 + 𝛾𝑖 + 𝛽1 [∑ 𝑔𝑖,𝜏→(𝜏+1) +
(𝑡−1)
𝜏=0

1

2
𝑔𝑖,𝑡→(𝑡+1)] + 𝜑𝑗 + 𝛽2 [∑ 𝑔𝑗,𝑡→(𝑡+1) +

1

2
𝑔𝑗,𝑡→(𝑡+1)

(𝑡−1)
𝜏=0 ] + 𝜀𝑖𝑗,𝑡→(𝑡+1);  𝑖 ≠ 𝑗 

          (9) 

Since Pi,0 and Pj,0 in Equation (9) are fixed and time-invariant, they form part of the 

fixed effects in the FE regression. Therefore the coefficients β1 and β2 in Equation (9) should 

be interpreted as relating to the effect of the population growth rates gi and gj. Because the 

choice of the base year is arbitrary, this shows that the effect of population scale in Equation 

(7) is also subsumed in the fixed effect and the estimated coefficients 𝛽1
′  and 𝛽2

′  reflect the 

impact of the population growth rates. This is in contrast with the OLS model of Equation (6) 

where the corresponding coefficients relate to the effect of population levels. This highlights 

that the coefficients in the OLS model are not directly comparable to the coefficients from a 

FE model. 

 

In the simple OLS specification of the gravity model [Equation (6)], the expected sign 

on the coefficients β1 and β2 is positive. However, in the FE specification in Equation (7), there 

is no a priori reason to believe that the estimates of coefficients 𝛽1
′  and 𝛽2

′  should both be 

positive. For a given propensity to migrate (e.g. linked to the age structure of the population), 

faster population growth will imply higher outward migration levels, i.e. a positive estimate of 

𝛽1
′ . This is mostly a demographic effect. On the other hand, faster population growth may not 

necessarily imply relatively higher inward migration levels. The outcome would depend on a 

range of economic factors such as job growth, resource constraints and the corresponding 

prices (particularly of housing), and on the source of the population growth (natural increase, 

international migration, etc.). Consequently, the estimate of 𝛽2
′  is not necessarily positive. 
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3. RESULTS 
 

 

We test our interpretations using data from migration flows between the sixteen regions of New 

Zealand. Inter-regional migration data were obtained from the Census of Population and 

Dwellings (1996, 2001, 2006 and 2013), based on self-reported region of residence five years 

previously. Responses that were unidentifiable or not elsewhere classified were distributed 

proportional to valid responses (including non-movers), while the few zero-count flows were 

increased by one. This provides 960 observations of the dependent variable. Population 

numbers were taken from the Estimated Usually Resident Population at 30 June in each year. 

Distances between each region were population-weighted straight line distances (based on the 

2013 population distribution). Additional dummy variable controls were included for 

contiguity of regions, and for flows between the two main islands of New Zealand. We 

implement BLUE, OLS, and FE regressions, equivalent to Equations (5), (6), and (7) 

respectively, as well as FE re-specified in growth rates as in Equation (9).  

 

Table 1 presents the results of our regression models, excluding control variables and 

fixed effects. Column (1) contains the results for the OLS specification, equivalent to Equation 

(6), Column (2) is the FE specification of Equation (7), Column (3) corresponds to the growth 

rates specification of Equation (9), and Column (4) is the BLUE estimator (given the assumed 

DGP) of Equation (5). 

 

Table 1:  Regression Results 
 

Model 
(1) 

OLS 

(2) 

FE 

(3) 

FE  

(Growth Rates) 

(4) 

BLUE 

(RLS) 

 

lnPi 
0.818*** 

(0.016) 

0.974*** 

(0.206) 
- 

0.666*** 

(0.141) 

lnPj 
0.803*** 

(0.016) 

-0.782*** 

(0.214) 
- 

-0.531*** 

(0.147) 

gi - - 
1.051*** 

(0.228) 
- 

gj - - 
-0.824*** 

(0.228) 
- 

lnDij 
-0.503*** 

(0.035) 

-0.782*** 

(0.038) 

-0.782*** 

(0.033) 

-0.782*** 

(0.038) 

Adj. R2 0.888 0.948 0.948 - 
 

Note: Robust standard errors in parentheses; n=960; *** p<0.01; ** p<0.05; * p<0.1. 

 

 

All coefficients in Table 1 are highly statistically significant. Comparing the 

coefficients between the OLS (1) and FE (2) models highlights one substantial difference – the 

coefficient on the destination population is positive and statistically significant in the OLS 

specification, but negative and statistically significant in the FE specification. This change in 

coefficients could be construed as demonstrating a lack of robustness in the estimates. However, 

based on the exposition of our specification earlier, it is clear that the coefficients on population 
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variables cannot be compared directly. The negative sign on population in the FE specification 

simply suggests that higher population growth rates in the destination are associated with 

smaller migration flows. As described above, our results are consistent with inward migration 

being constrained, perhaps by unavailability of a suitable quantity of affordable housing for 

migrants, or competition between internal and international in-migrants for the housing that is 

available. Moreover, this result is consistent with the model in Column (3), where the model is 

re-specified in growth rates. The results in column (4) for the BLUE estimator demonstrate the 

degree of bias in the OLS and FE estimators for the DGP in Equation (5) – the coefficients on 

population are much smaller with the BLUE estimator, suggesting that other estimators 

substantially over-state the effect of population on migration. 

 

4. CONCLUSION 

Peeters (2012) critiqued the OLS and FE estimators for their dissimilarity in the point estimates 

of the population coefficients. However, as demonstrated in this paper, there is no a priori 

reason to expect these coefficients to hold the same sign. The coefficients in OLS and FE 

models must be interpreted differently. This misinterpretation is relatively common. For 

instance, the unexpected sign on employment in Aldashev and Dietz (2014), and the change in 

coefficient signs between OLS and FE models in Ramos and Surinach (2017) can be explained 

in this way. Moreover, we have shown that the standard OLS and FE models lead to biased 

coefficients on population compared with a BLUE estimator of a DGP with fixed effects. These 

results have significance not only for the estimation and interpretation of the coefficients of 

gravity models in the migration literature, but also in the literature on trade. 
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