

# Multi-region stochastic projections for New Zealand

Results and implications for ethnic projections

Michael Cameron & Jacques Poot







#### Acknowledgements



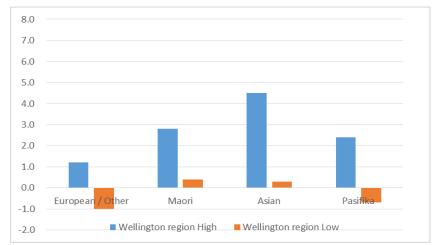
- This research is supported by funding through two MBIE-funded projects:
  - Capturing the Diversity Dividend for Aotearoa New Zealand (CADDANZ)
  - 2. Climate Change Impacts and Implications (CCII)
- And aligned with follow-up work funded by the Royal Society of NZ Marsden Fund (Tai Timu Tangata, Taihoa e ...?) that I will present on tomorrow
- We thank Statistics NZ for providing much of the data that underlies the models

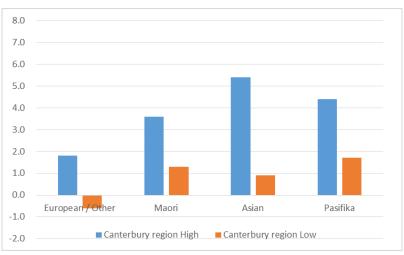
#### **CADDANZ**



- In the CADDANZ project, we are not only concerned with looking at New Zealand's past and current experience of diversity, but looking ahead to the future
- We will do this through two methods:
  - Subnational ethnic population projections
  - Spatial microsimulation modelling
- Today I want to outline some initial work on the first of these two methods

## Why do ethnic population projections?



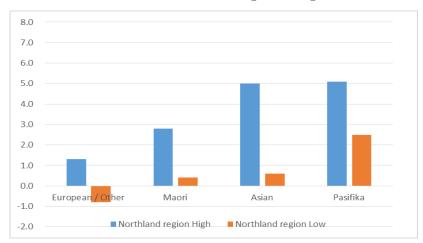


- To show trends in diversity and differences between regions, cities and suburbs
- To deliver appropriate ethnic-group targeted public services in health and education
- To provide context for other socio-economic trends

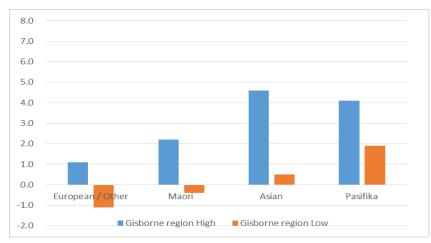
# Regional diversity in projected average annual ethnic population growth 2013-2038: metropolitan areas

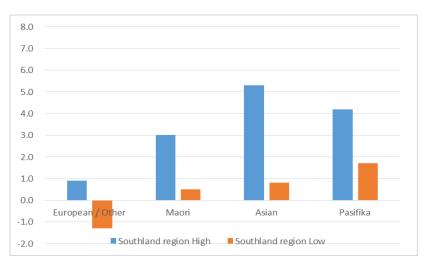


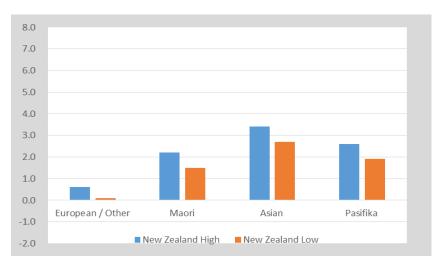








Source: Statistics New Zealand Subnational Ethnic Population Projections: 2013(base)-2038


# Regional diversity in projected average annual ethnic population growth 2013-2038: peripheral areas











Source: Statistics New Zealand Subnational Ethnic Population Projections: 2013(base)-2038

## Why introduce a new approach to ethnic projections?



- Complementing SNZ projections with projections produced using alternative methods can provide more confidence in the projected trends
- Modelling transitions explicitly provides a better understanding of the underlying:
  - transitions of age, marital status, labour force participation, location
  - transitions of ethnic identity
- Implementation depends on data availability and the ability to construct plausible future transition assumptions; the maths model (Markov chain) is straightforward and the computational burden no longer a problem
- Complexity and uncertainty increases from national population to sub-national population to sub-national population by ethnicity
- Stochastic (probabilistic) projections can quantify uncertainty

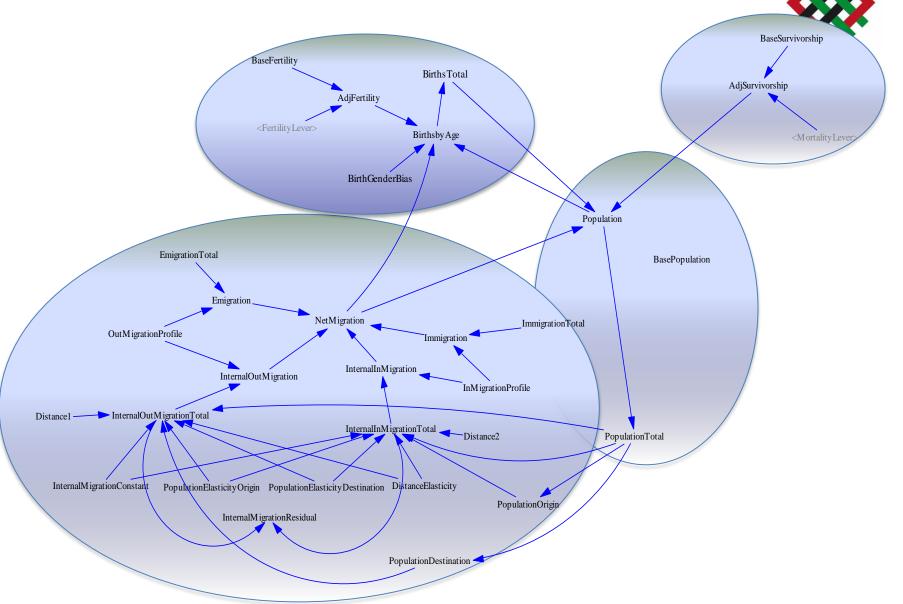
### Advantages of stochastic (probabilistic) projections (e.g., Bryant 2005)



- Statements that the future population will be between x and y with z% probability are more informative than just quoting low, medium and high projections
- Probabilistic statements can also be made regarding other interesting demographic indicators, such as demographic dependency ratios (e.g., pop. 65+ / pop 15-64)
- Moreover, differences in regional uncertainty can be quantified in terms of differences in the underlying parameter distributions
- The consistency of fertility, mortality and migration assumptions can be assured through modelling

#### Stochastic projections in New Zealand




- Wilson (2005) was the first to apply stochastic population projections methodology in NZ
- Cameron and Poot (2010; 2011) were the first to apply the method at the subnational level (for parts of the Waikato Region, at the TA level)
- Statistics NZ began producing national-level experimental stochastic projections at the national level in 2011 (Dunstan, 2011); these became 'official' from 2014
  - National ethnic projections are also stochastic
  - Subnational stochastic projections have been completed, but are still experimental (i.e. not 'official' projections)
  - No stochastic subnational ethnic projections

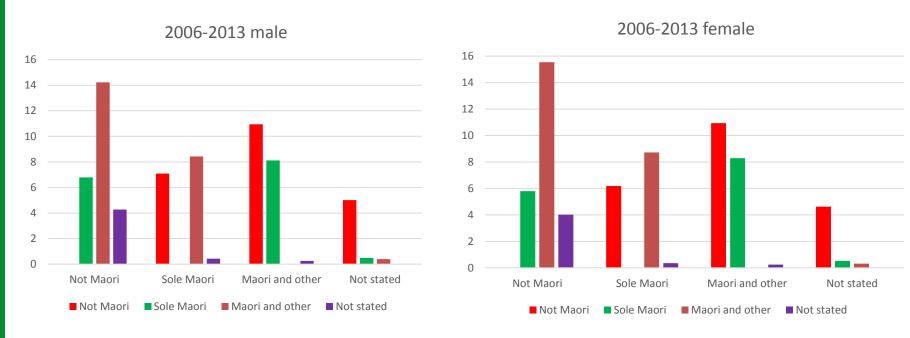
### Projections at the subnational level



- There are essentially two broad approaches for projecting the population at the subnational level:
  - 1. top-down, where a national population projection model is run initially, then sub-national models are undertaken and subsequently moderated to ensure that the sum of the sub-national projections is equal to the national projection; or
  - bottom-up, where sub-national projections are run without recourse to a national projection, commonly with these subnational projections each being independent (though often with a common set of underlying assumptions)
- The former method is that preferred by Statistics NZ, whereas many consulting firms, and NIDEA, have typically adopted the latter

The prototype multi-region model




#### The challenge



- With a conventional (total) population projection, only three components of population change need to by projected:
  - Fertility (births)
  - 2. Migration (internal and international)
  - 3. Mortality or survivorship (deaths)
- But with ethnic projections, because ethnicity is selfdetermined and people can change their ethnic identity, we also need to project changes in ethnicity within the population (inter-ethnic mobility)

### Example of inter-ethnic mobility: Māori 2006-2013 (6.5%)





Distribution of those who changed category (percent)

The horizontal axis main label indicates how people were self-identified in 2013; the vertical % bars for each main label indicate what percentage of a 2006 ethnicity group (indicated by bar colour) had changed ethnicity by 2013

Source: Robert Didham (2015), Ethnic mobility.

## Where does inter-ethnic mobility fit in our model?



- Our intention is to incorporate inter-ethnic mobility within a gravity model framework
  - This is the same framework we currently use for internal migration (and similar to that used for international migration)
- The challenge is in incorporating both forms of mobility (spatial and inter-ethnic) in the same model
  - An open question is whether we:
    - 1. Move migrants first, then project inter-ethnic movements
    - 2. Project inter-ethnic movements first, then move migrants
    - Do both at the same time
  - Option (3) is unlikely given available data, but there little steer in the international literature on which option of (1) or (2) should be preferred – though most use (1)
    - If transition rates vary by region, then the order is consequential

#### International comparison



- Ethnic projections are relatively new
- There is much uncharted or unresolved territory
  - Selection of ethnic groups (or aggregates) to project; Inter-ethnic mobility; Ethnicity breakdown of international migration; Gross internal migration by ethnicity
- International examples
  - USA: Hogan/Ortman/Colby (2015) projecting diversity
    - Native/foreign born; race; broad ethnic groups; gross foreign born & net native born international migration, no inter-ethnic mobility
  - UK: Rees/Clark/Norman/Wohland/Lomax (2015)
    - NewETHPOP, 12 groups, 389 LAs, gross internal migration, no inter-ethnic mobility
  - France: Rallu (2016)
    - National population of migrants by country of birth aged 65 and over; sex/age/origin-specific migration rates, national survival rates
  - Australia: Wilson (2016)
    - National projections of Australia's indigenous population; rates of identification change; indigenous net overseas migration is zero; impact of mixed partnering

|                           | Statistics New Zealand           | CaDDANZ                        |
|---------------------------|----------------------------------|--------------------------------|
| Signalling of uncertainty | Deterministic (Low, Medium,      | Probabilistic (distribution of |
|                           | High)                            | outcomes)                      |
| Projection horizon        | 25 years (2013-2038)             | ditto                          |
| Definition of groups      | Individuals can belong to        | Having multiple ethnicities is |
|                           | more than one group              | possible, but individuals      |
|                           |                                  | belong to only one group       |
| Aggregation               | Sum of the groups is greater     | Sum of groups equals total     |
|                           | than the total population        | population                     |
| Sub-national areas        | 16 regional council areas, 67    | 16 regional council areas      |
|                           | territorial authority areas      |                                |
|                           | and 21 Auckland local board      |                                |
|                           | areas                            |                                |
| Fertility                 | By area: female fertility by     | By area: female fertility by   |
|                           | single ethnicity; male           | multiple ethnicities           |
|                           | paternity to generate            |                                |
|                           | multiple ethnicities; loss       |                                |
|                           | factors compensate for           |                                |
|                           | ethnicity overcounting           |                                |
| Sex ratio at birth        | 105.5 males per 100 females      | ditto                          |
|                           | for all areas and ethnic         |                                |
|                           | groups                           |                                |
| Mortality                 | By area: mortality rates by      | ditto                          |
|                           | age and sex                      |                                |
| Migration                 | By area: no split between        | By area: gross internal and    |
|                           | internal & international; net    | international migration level  |
|                           | migration level by age, sex      | by ethnicity through gravity   |
|                           | and ethnicity; sum of area       | model; assumed age-sex         |
|                           | net migration may not equal      | distribution; sum of area net  |
|                           | assumed national net             | internal migration equals      |
|                           | migration                        | zero                           |
| Inter-ethnic mobility     | National net inter-ethnic        | By area: gross inter-ethnic    |
|                           | mobility rates by age            | mobility by age and sex (?)    |
| Interdependence of        | Low (high) projection = low      | Rates are drawn from           |
| assumptions               | (high) fertility, paternity, net | multivariate distributions     |
|                           | migration, net inter-ethnic      | with covariances estimated     |
|                           | mobility; high (low) mortality   | by past patterns               |
|                           |                                  |                                |




### Comparing methodologies

#### Where to from here?



- We need to determine a (final) set of ethnic groups (of single/multiple ethnicities) to include in the model
  - In part this will be determined by data constraints (small groups will not be able to be feasibly modelled)
- We will then be further developing the gravity modelling framework to consider inter-ethnic mobility
  - One of the main challenges in this is defining inter-ethnic
     'distance' (as distance is a key parameter in gravity models)
- We expect to have produced prototype stochastic subnational ethnic projections sometime in 2017









