

A Sticky Situation: Low Diastase Activity in Mānuka Honey

¹School of Science University of Waikato

Background

- Diastase activity is used as a honey export quality control parameter
- Low levels of diastase activity are used to indicate high temperature heating or poor storage conditions
- Diastase activity in honey must be diastase number (DN) ≥8 for export
- Mānuka honey containing high methylglyoxal (MGO) often falls under DN8 and cannot be exported
- Unique or prevalent compounds (e.g. polyphenolic compounds, MGO) in mānuka honey may be inhibiting diastase activity

Aim

To investigate if intrinsic honey compounds have an effect on diastase activity in mānuka honey.

Methods

- 1. Test fresh honeys of different floral origins for phenolic compounds, diastase activity and moisture. Store a sub-set of these honeys at 20°C for 161 days to track parameter changes over time.
- 2. Carry out spiked honey matrix trials (below)

Amber Bell¹, Sunil Pinnamaneni², Megan Grainger¹

Results

Table 1. Diastase activity, DHA, MGO, 5-hydroxymethylfurfural (HMF) and 3-PLA concentrations for a range of fresh honeys, ordered by MGO concentration.

Diastase activity (DN)	DHA (mg/kg)	MGO (mg/kg)	HMF (mg/kg)	3-PLA (mg/kg)	
1.1	3960	995	5.4	1760	
26.8	3850	625	1.8	1750	
8.6	899	297	2.3	780	
28.9	1750	185	1.4	590	
6.1	446	153	6.4	830	
14.7	192	69.6	12.2	320	
6.0	80.9	11.0	0	0	
8.4	57.5	4.4	0	7.4	
5.6	23.0	1.5	0.5	0	
	(DN) 1.1 26.8 8.6 28.9 6.1 14.7 6.0 8.4	(DN)(mg/kg)1.1396026.838508.689928.917506.144614.71926.080.98.457.5	(DN)(mg/kg)(mg/kg)1.1396099526.838506258.689929728.917501856.144615314.719269.66.080.911.08.457.54.4	(DN)(mg/kg)(mg/kg)(mg/kg)1.139609955.426.838506251.88.68992972.328.917501851.46.14461536.414.719269.612.26.080.911.008.457.54.40	

Figure 1. The decrease of diastase activity over time in the spiked honey samples stored at 27°C and 34°C. Points circled in red show a statistically significant difference from the control.

In fresh honey:

- diastase activity and other measured parameters

In spiked honey:

- (Figure 1)
- the control (Table 2)

Table 2. Calculated half life of diastase (time taken for diastase) activity to drop by half) for the control, MGO and 3-PLA spiked samples

	Diastase Half Life (Days)				
Spike	20°C	27°C	34°C		
Control	1340	590	160		
MGO	820	440	80		
3-PLA	340	380	97		

Acknowledgements

A massive thank-you to NZ Beekeepers for supplying the honey used in this research, as well as to Callaghan Funding and The Experiment Company for funding this project.

Results cont.

Table 1 shows variation in results, with no clear correlation between

Some fresh non-mānuka honeys have diastase activity below DN 8 When fresh honey was stored (20°C, 161 days), diastase activity loss was significantly greater in mānuka than non-mānuka honey samples

Compared to the control, MGO and 3-PLA spiked honey samples had significantly lower diastase activity over time at higher temperatures

Diastase half life was shorter in the MGO and 3-PLA samples compared to

Conclusions

 Temperature and time are the significant drivers of diastase activity loss, however, they are not the only factors

MGO and 3-PLA accelerate diastase activity loss in honey

Diastase activity may be an unreliable test for mānuka honey

quality, and potentially other native honeys

Future Work

Investigate the mechanism of diastase activity loss by 3-PLA and MGO Investigate the effects of other chemical and physico-chemical parameters on diastase activity in honey

Carry out a more comprehensive survey on New Zealand floral honeys

University of Waikato

amberbell_44@hotmail.com