

THE UNIVERSITY OF WAIKATO Te Whare Wānanga o Waikato

Impacts of Agricultural Domestic Supports on Developing Economies

Prepared for NZ Ministry for Primary Industries by

New Zealand Institute for Business Research Te Pūtahi Rangahau Umanga o Aotearoa

Kym Anderson, Erwin Corong, Anna Strutt & Ernesto Valenzuela

WAIKATO MANAGEMENT SCHOOL TE RAUPAPA

Impacts of Agricultural Domestic Supports on Developing Economies

Kym Anderson,^a Erwin Corong,^b Anna Strutt^c and Ernesto Valenzuela^d

REPORT COMMISSIONED BY NEW ZEALAND'S

MINISTRY FOR PRIMARY INDUSTRIES

Agreement No. 22667

November 2021

Acknowledgment: The authors gratefully acknowledge very helpful input and suggestions from MPI officials.

^a University of Adelaide, Adelaide and Australian National University, Canberra, Australia
^b Center for Global Trade Analysis, Purdue University, West Lafayette IN, United States.
^c Waikato Management School, University of Waikato, Hamilton, New Zealand.
^d Federation University, Berwick, Victoria, Australia.

Table of Contents

Ех	kecutiv	ve Summaryv				
1	Intro	luction and Background1				
2	Extent of Agricultural Domestic Supports1					
	2.1	Measuring the extent of farmer assistance and food consumer taxation1				
	2.2	Estimates of the extent of farmer assistance				
	2.3	Estimates of the extent of food consumer taxation9				
3	Basic	Economics of Reducing Domestic Supports11				
	3.1	Effects in supporting countries				
	3.2	Effects in non-reforming or non-assisting countries11				
4	Mode	elling Framework and Data12				
	4.1	Global trade model used12				
	4.2	Baseline data				
	4.3	Caveats				
5	Scena	ario Modelled and Results14				
	5.1	Reform scenario14				
	5.2	Macroeconomic results				
	5.3	Select sectoral results				
6	Conc	luding Comments25				
Re	eferen	ces27				
Aj	ppendi	x Tables				

List of Tables

Table 1 Agricultural NRA by country, 1986-88, 2001-03, 2017-19, 2019 and 2020 (%, weighted average using value of production without assistance as weights)
Table 2 Component shares of PSE, by country, 2019 (%) 8
Table 3 Subsidies and tariffs by aggregate region in the updated GTAP Data Base, primary agriculture and processed foods (%)
Table 4 Average domestic support and tariffs in the updated GTAP Data Base, by agricultural sector (%)
Table 5 Simulated change in real GDP for aggregate regions, 2019 (US\$m and %)16
Table 6 Simulated change in real output by aggregate region and sector, 2019 (%)17
Table 7 Simulated change in export and import volumes of farm products, aggregate regions,2019 (%)
Table 8 Simulated change in net farm income, ^a aggregate regions, 2019 (US\$m and %)19
Table 9 Simulated change in world real output, real exports and export prices by sector, 2019 (%)
Table 10 Simulated impact of domestic support removal on cotton in select export-increasingSub-Saharan African, Asian and MENA countries, 2019 (US\$m and %)21
Table 11 Simulated impact of domestic support removal on rice in select export-increasingAsian and Latin American countries, 2019 (US\$m and %)
Table 12 Simulated impact of domestic support removal on the beef and sheepmeat sector inselect export-increasing Latin American countries, 2019 (US\$m and %)
Table 13 Simulated impact of domestic support removal on the coarse grain sector in select export-increasing countries, 2019 (US\$m and %)
export-increasing countries, 2019 (US\$m and %)

Table 17 Simulated impact of domestic support removal on the dairy sector in select exportexpanding countries, 2019 (US\$m and %).....25

List of Figures

Figure 1 Aggregate agricultural NRA, by country, 2014 and 2019 (%, weighted average using value of production without assistance as weights)4
Figure 2 Aggregate value of agricultural assistance, by country, 2019 (current US\$ billion)5
Figure 3 Agricultural NRAs for developing countries ^a European Union and all OECD, 1955 to 2020 (%, weighted average using value of production without assistance as weights)
Figure 4 Aggregate value of agricultural assistance, by product, 2016-18 (current US\$ billion per year)
Figure 5 Component shares of PSE, Japan, EU and all OECD, 1986-88, 2001-03 and 2019 (%)
Figure 6 Aggregate agricultural consumer tax equivalent (CTE) at farm gate, by country, 2019 (current US\$ billion)
Figure 7 Percentage agricultural consumer tax equivalent (CTE) at farm gate, by country, 2019 (%)
Figure 8 Approximate contribution of HIC and DC reform to total GDP change, 2019 (%) .16

Appendix Tables

Table A1 Regions modelled
Table A2 Sectors modelled
Table A3 Aggregate value of consumer tax equivalent, by product and country, 2019 (currentUS\$m per year)
Table A4 Percentage consumer tax equivalent, by product and country, 2019 (%)33
Table A5 Aggregate value of assistance to producers by product and country, 2019 (current US\$m per year)
Table A6 NRA to producers by sector and country, 2019 (%)

Table A7 Regional contributions to global output by product, ^a 2019 updated GTAP Data Base (%)
Table A8 Regional contributions to global household consumption, ^a by product, updated 2019GTAP Data Base (%)
Table A9 Terms of trade change from removal of domestic supports, developing countries and regions, 2019 (%)
Table A10 Changes in exports by aggregate region and sector, importing regions in columns (%)

Executive Summary

Agricultural price and trade policies were highly distortive of world food, feed and fibre markets in the latter half of the 20th century, but many reforms began in the 1980s and continued following the implementation over 1995-2004 of the Uruguay Round Agreement on Agriculture. Some import tariffs have since come down further, and export subsidies were outlawed by WTO members in 2015.

However, domestic support has replaced the assistance previously provided to farmers by tariffs, which is prompting WTO members to place them on the agenda for the next biennial WTO Trade Ministerial to begin in late November 2021. Over the past 20 years, export subsidies have been largely abolished and import tariffs on farm products have fallen considerably, while domestic subsidies to farmers have more than doubled in OECD countries and are starting to emerge in emerging economies.

To inform discussions, the present study was commissioned by the New Zealand Ministry for Primary Industries. It seeks to estimate the impacts of agricultural domestic supports globally and in both farm-supporting countries and other – especially developing – economies. It does so by calibrating the database of the global economywide GTAP (Global Trade Analysis Project) model to 2019 and then simulating the removal of food and agricultural domestic supports globally.

The estimated impacts of globally removing domestic support are of course negative for supported farmers, who are primarily in Western Europe, Northeast Asia and South Asia, but they are positive for most farmers in the rest of the world (and for the global economy). Impacts vary across product groups, consistent with the considerable variations in levels of support across agricultural industries.

The global economic welfare benefit from removing all domestic support to farmers is conservatively estimated to be US\$4.7 billion per year. The most assisted farmers would be worse off if not compensated, but all other farmers would gain from higher output prices, including those in supporting countries who currently receive little or no support.

A side benefit of removing domestic supports is that it boosts government budgets in reforming countries. That allows society to re-purpose that spending to achieve more socially desirable objectives. Examples include investing in growth-enhancing rural public goods such as education, health, agricultural research, and transport and communication infrastructure. It could also include paying farmers for their provision of ecosystem services. Targeted income supplements fully decoupled from production, via generic social safety nets/trampolines, are another possible use of savings from removing distortionary domestic supports and instead reducing poverty and inequality directly.

1 Introduction and Background

This study, commissioned by the New Zealand Ministry for Primary Industries (MPI), estimates the impacts of agricultural domestic supports in farm-supporting countries and in other – especially developing – economies (see Appendix Table A1).

The study provides new estimates of the trade and other economic effects of agricultural domestic support to farmers in countries competing in the global marketplace with other countries whose farmers are unsubsidised or only lightly assisted. While those policies harm the world economy in aggregate, their impacts differ across groups within the two sets of countries. Our research sheds light on which groups and which countries would gain or lose from removing those farm assistance measures. This may help to assist in prioritising areas for domestic support reform within multilateral negotiations.

2 Extent of Agricultural Domestic Supports

At the start of the WTO's Doha round of multilateral trade negotiations in 2001, it was agriculture where the main remaining barriers to global merchandise trade were to be found (Anderson & Martin, 2005, 2006). Import restrictions were the main instrument of farm support, accounting for 93% of the global welfare cost of farm-support policies while domestic supports contributed just 5% (Anderson, Martin & Valenzuela, 2006). In the two decades since then, export subsidies have been almost completely abolished and import tariffs on farm products have fallen considerably. However, the share of domestic subsidies in total support to farmers in OECD countries has more than doubled. It is thus time to revisit this issue and re-estimate the extent and effects of these measures of assistance to farmers globally, leading up to the 12th WTO Trade Ministerial Conference in November-December 2021.

In this section, we present some key insights into agricultural market interventions by governments from the OECD Producer and Consumer Support Estimates (PSE and CSE) up to 2020, updating the work of Anderson and Valenzuela (2020). We focus on 2019 which will be the base year for our modelling, since 2020 was an unrepresentative year given the impacts of Covid-19 on the global economy. We also show data for 2014, which is the baseline year we draw on from the Global Trade Analysis Project (GTAP) model's global economywide database.

2.1 Measuring the extent of farmer assistance and food consumer taxation

We draw primarily on the OECD (2021) to consolidate its information on government budgetary transfers and other forms of support for farmers by policy instrument for 41 OECD member countries and 13 major emerging economies of agricultural significance.¹ Together these 54 countries account for two-thirds of global agricultural production. In addition to market price support estimates by product, the OECD also provides estimates of other productspecific and non-product-specific assistance both to farmers and to services assisting farmers.

¹ Australia, New Zealand, China, Japan, Korea, Indonesia, Philippines, Viet Nam, India, Canada, US, Mexico, Argentina, Brazil, Chile, Colombia, Costa Rica, EU27, Iceland, Switzerland, Norway, Russian Federation, Ukraine, Kazakhstan, Turkey, Egypt, Israel and South Africa.

That allows us to rank countries by the extent of their agricultural subsidies and market access restrictions. We also disaggregate assistance by policy instrument and, where product-specific, by each of the most important product groups.

The OECD's indicators of the extent of domestic price distortions make it possible to estimate their effects on domestic markets, prices, trade and producer, consumer and national economic welfare. It is also possible to attribute the aggregate impacts into those due to each of the three WTO pillars of farmer assistance (import market access, export subsidies, and domestic support). However, these differ from the concepts that trade negotiators developed and used in the WTO following the Uruguay Round Agreement on Agriculture (URAA). As pointed out in the OECD's PSE Manual (OECD 2016), the WTO's Aggregate Measure of Support (AMS) is a unique concept not based on standard economic criteria and narrower than the PSE. Specifically, the AMS does not include support to producers via trade policies (import tariffs and export subsidies) but only the market price support (MPS) where administered prices exist. Nor does it include support via the Blue Box (programs that meet specific production-limiting requirements, see Article 6 of the URAA), the Green Box exemptions (Annex 2 of the URAA), the investment and input subsidy programs in developing countries listed for Special and Differential Treatment (Article 15 of the URAA), and the policy support that is excluded because it falls under specified de minimus levels (Article 6 of the URAA) of 5% of the value of production for developed countries and 10% for developing countries (and 8.5% for China). Moreover, the MPS component of the AMS simply compares the domestic administered price each year with a fixed reference price, usually the average border price in domestic currency in 1986-88. Hence it does not reflect the actual support being received by producers each year. It is the latter that matters for estimating the trade and other effects of current policies, hence our reliance in this study on the PSE as estimated by the OECD.

While the OECD does not separate the contributions of domestic price subsidies versus border restrictions (e.g. import licences, tariffs and tariff rate quotas) in causing the domestic price to exceed the border price of a like product (so-called Market Price Support), contributors to the protection database of the global economywide GTAP Model do make that distinction, by carefully drawing on detailed national databases. The latest version of that database currently is for 2014. Assistance rates have risen considerably in some key countries since then, so 2014 numbers have been projected to 2019 for analysis. The latest year of OECD estimates reported here is 2020, but to avoid the effects of COVID-19 we focus on 2019 as our baseline.

The study then estimates the effects of domestic support provided by budgetary transfers (and of the subsidy equivalents of farm trade policies, for comparative purposes) using the GTAP model. From the 2019 database, this modelling framework is able to provide estimates of the impacts on various countries of each major producing country's policies, and of their combined global market effects, to gain insights into farm incomes, agricultural and food exports, and national economic welfare.

A vast suite of policy indicator estimates is provided by the OECD. The key ones at the commodity level are what it calls single commodity transfers to producers and to consumers, both measured at the farm gate. As well, OECD provides a producer support estimate (PSE) for each country's farm sector in US dollars and in percentage terms. The sector's PSE includes some measures that are not commodity specific. Also provided by the OECD, but not included in the PSE, are general services support estimates (GSSE) to the sector as a whole.

The single commodity transfers to producers and the sectoral PSE, when expressed in percentage terms, can also be expressed as a nominal rate of assistance (NRA) to parts or all of the agricultural sector. The NRA differs from and is larger than the PSE in that it reflects the percentage by which producer incentives is above what it would be without intervention, whereas the PSE reflects the percentage of the producers' actual gross earnings (including assistance) that are due to farm support measures and so is always smaller than the NRA and cannot be greater than 100%. That is, NRA = PSE/((100-PSE)/100).

The OECD's total support estimate is the sum of all transfers from consumers and taxpayers to producers and consumers of farm products. In almost all cases the annual net value of transfers to the sector (PSE + GSSE) has been positive in recent years.

Trade is also affected by the extent to which consumer prices of farm products are distorted by policies, as captured by a consumer tax equivalent (CTE). The CTE is generally positive and the opposite sign to the OECD's consumer support estimate (CSE). The most common instrument of such distortion is an import restriction such as a tariff or tariff rate quota and, in the past, export subsidies. A subset of countries directly subsidise food prices for some groups of consumers, in which case the CTE could be negative.

The 14 individual products within the sub-sectors for which subsidy estimates are available in OECD (2021) are:

- Crops: wheat, barley, maize, rice, soybean, canola (or other oilseed), cotton and sugar; and
- Livestock products: beef, sheepmeat, pork, poultry, eggs and milk.

In most of the top-consuming countries, market demands can and mostly are met – or exceeded – by local production. Those countries for which self-sufficiency exceeds 100% are direct competitors to other agricultural-exporting countries. Assistance to their farmers obviously makes it more difficult for developing countries' farmers to compete there and elsewhere. But supports to farmers in self-sufficient or net-food-importing countries also reduce opportunities for developing country exporters. Hence the need to examine producer assistance policies in all countries of consumption significance, regardless of whether they are currently net exporters, self-sufficient or net importers.

2.2 Estimates of the extent of farmer assistance

The national aggregate NRAs are shown in Figure 1 for 2014 and 2019. The small changes in international prices for agricultural products between those two periods contributed to the average NRA for all OECD countries rising slightly from 22% to 23%. However, over the same period, the NRA for numerous individual countries fell somewhat. The biggest exceptions are the United States, whose NRA rose from 7% to 17%, and India, which has reduced its effective taxation of farmers (NRA moving from -22% to -5%).

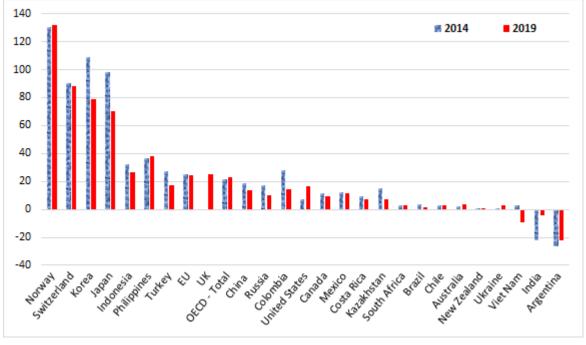


Figure 1 Aggregate agricultural NRA, by country, 2014 and 2019 (%, weighted average using value of production without assistance as weights)

* Indonesia refers to 2015 in place of 2016-18. Source: OECD (2021).

The rate of assistance to farmers is highest in the coolest European and East Asian countries. Apart from Japan, those countries are very small producers. To get a fuller picture of where the assistance is greatest, the gross value of production also needs to be considered. Figure 2 shows the aggregate annual value of agricultural assistance in US\$ terms. It reveals that assistance to farmers in 2019 amounted to US\$184 billion for China (up from just \$14b in 2000-02) compared with US\$243b for all OECD member countries. The US support (US\$52b) is only half that of the EU's US\$105b. Japan (US\$38b), Indonesia (US\$25b) and Korea (US\$20b) together provide barely four-fifths as much aggregate farmer assistance per year as the EU.

Once developing countries became independent from the 1950s, many effectively taxed their farmers rather than assist them through to the 1980s, before gradually opening their economies and phasing out their export taxes and other disincentives. Meanwhile, high-income countries increasingly assisted their farmers through to the mid-1980s (apart from a small dip in the mid-1970s when international food prices spiked), before reforms set in and rates of assistance progressively fell. More recently, some middle-income countries have transitioned from taxing to subsidizing their farmers, including populous China, Indonesia and the Philippines, so the average NRA for developing countries is converging on that for high-income countries (Figure 3). Hence the need to examine current policies of both sets of countries in this study.

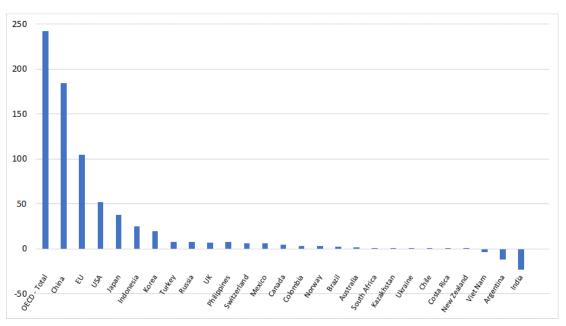
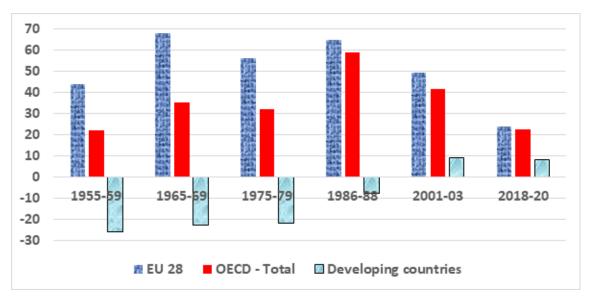



Figure 2 Aggregate value of agricultural assistance, by country, 2019 (current US\$ billion)

* Indonesia refers to 2015. Source: OECD (2021).

Figure 3 Agricultural NRAs for developing countries^a European Union and all OECD, 1955 to 2020 (%, weighted average using value of production without assistance as weights)

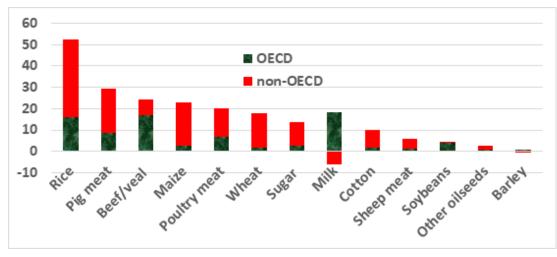
^a The pre-1986 five-year average estimates are from Anderson (2009), as are the later developing country average rates which are for 1985-89, 2000-04 and 2014 (the latter from www.ag-incentives.org). Prior to 1986 the rates are for Western Europe and all high-income countries rather than the EU and OECD, respectively. Source: OECD (2019), Anderson (2009), and www.ag-incentives.org.

Table 1 shows the extent of these transitions in agricultural support/taxation since the mid-1980s for each of the countries monitored by the OECD. Only three countries in that 54-country sample still had negative agricultural NRAs in 2019: Argentina (-22%), India (-5%), and Viet Nam (-9%).

	1986-88	2001-03	2017-19	2019	2020
Norway	247	238	145	132	104
Switzerland	328	196	95	88	108
Korea	165	95	86	79	91
Japan	135	111	71	70	69
Philippines ^a	na	23	37	38	37
Indonesiaª	na	10	30	27	25
UK	na	na	26	25	26
European Union	63	43	24	24	24
Turkey	29	33	22	17	24
US	26	21	13	17	12
Colombiaª	na	28	14	14	15
Chinaª	na	7	16	14	14
Mexico ^a	na	31	11	11	11
Russian Federation ^a	na	12	12	10	7
Canada	53	23	9	9	11
Kazakhstan	na	3	5	7	3
Costa Rica	na	8	6	7	8
Australia	11	4	3	3	2
South Africa ^a	na	8	4	3	3
Ukraineª	na	1	1	3	1
Chileª	na	6	3	3	3
Brazil ^a	na	8	2	2	1
New Zealand	12	1	1	1	1
Indiaª	na	-5	-5	-5	-7
Viet Nam ^a	na	8	-6	-9	-6
Argentinaª	na	-13	-17	-22	-16

Table 1 Agricultural NRA by country, 1986-88, 2001-03, 2017-19, 2019 and 2020 (%, weighted average using value of production without assistance as weights)

^a In the 1986-88 column, the estimates for developing countries are for 1985-89 and the estimates for Russia and Ukraine are for 1992-95, all from Anderson (2009).


Source: OECD (2021) and Anderson (2009).

A subset of that assistance is product-specific. In OECD countries, dairy (US\$18 billion per year) and beef cattle (US\$17b) are the largest recipients in 2016-18, while in emerging economies it is rice (US\$36b) that receives by far the most assistance followed by pigs (US\$21b), maize (US\$20b) and wheat (US\$16b) (Figure 4). Full commodity details are provided in Appendix Tables A5 and A6.

In addition to much change in the total support to farmers over the past three decades, there have also been substantial changes in the types of support. The key forms of assistance in the PSE include market price supports (such as import tariffs and quotas plus domestic price subsidies) and payments based on outputs or input use, payments based on cropped area or livestock numbers where production is required, payments based on cropped area or livestock

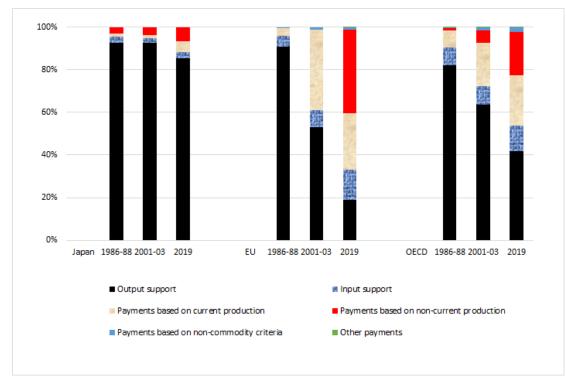

numbers where production is not required, and payments for environmental services. For the OECD as a group, the extent of assistance coming directly from support to outputs has declined substantially this century, from 63% to 41%, meaning the share of other budgetary payments has more than doubled. While for the EU it has plummeted from 95% to 33%, it is still nearly 90% in Japan (Figure 5). For most other countries, the vast majority of support still comes from those two direct forms of support (Table 2).

Figure 4 Aggregate value of agricultural assistance, by product, 2016-18 (current US\$ billion per year)

Source: OECD (2019).

Figure 5 Component shares of PSE, Japan, EU and all OECD, 1986-88, 2001-03 and 2019 (%)

Source: OECD (2021).

	Output support (A)	Input support (B)	Payments based on current production (C)	Payments based on non-current production (D+E)	Payments for environment services and resource conservation (F)	Other payments (G)	TOTAL
Argentina	101	-1	0	0	0	0	100
Australia	0	55	23	21	1	0	100
Brazil	3	92	5	0	0	0	100
Canada	46	12	35	6	0	1	100
Chile	2	92	6	0	0	0	100
China	67	10	15	7	1	0	100
Colombia	90	10	0	0	0	0	100
Costa Rica	92	8	0	0	0	0	100
European Union	19	14	26	27 ^a	14ª	0	100
India	276	-145	0	-29	0	-2	100
Indonesia	89	11	0	0	0	0	100
Japan	85	3	5	7	0	0	100
Kazakhstan	-7	102	5	0	0	0	100
Korea	91	3	3	4	0	0	100
Mexico	56	22	1	9	12	0	100
New Zealand	86	14	0	0	0	0	100
Norway	51	6	31	11	0	0	100
Philippines	97	3	0	0	0	0	100
Russian Fed	50	33	10	0	0	8	100
South Africa	70	29	1	0	0	0	100
Switzerland	46	2	17	20	12	4	100
Turkey	77	9	13	0	0	0	100
UK	25	12	10	47	1	5	100
Ukraine	67	12	21	0	0	0	100
US	21	17	46	12	4	0	100
Viet Nam	113	-11	-2	0	0	0	100

Table 2 Component shares of PSE, by country, 2019 (%)

^{*a*} The EU's Greening Payments (PHNR12) in E have been shifted to F. Source: OECD (2021).

The general services support estimate (GSSE), which is not included in the preceding Figures but is part of the OECD's Total Support Estimate (PSE+GSSE), tends to be non-product-specific. It is dominated by investments in agricultural research and rural infrastructure; but it does not include broader investments in rural education and health. GSSE has averaged less than 5% of the gross value of agricultural production over the past three decades but is more important now than early this century and proportionately much more important in lightly-assisting countries (some of which provide no domestic support). GSSE is mostly made up of

expenditures on agricultural research, development and extension (R, D&E) and infrastructure, but inspection and control expenditure is also non-trivial. Marketing and promotion, and public stockholding, are relatively minor. Those component shares have not changed much over the past 15 years, although they varied considerably across countries as of 2019.

2.3 Estimates of the extent of food consumer taxation

Data on the value of transfers from consumers are equally as important as the producer NRAs, because insofar as they discourage consumption of farm products they reduce net imports and hence export prospects for developing country farmers. In most countries these transfers are generated by import restrictions: a tariff (or quantitative import restriction) is the equivalent of a subsidy to the domestic producer of a like good and a tax on domestic consumers of such products.

Figure 6 and Figure 7 summarise those CTE data, details of which are in Appendix Table A3 and Table A4. The tax on Chinese consumers (US\$143b) is twice as large as that on all OECD consumers (US\$78b) in aggregate terms, and in percentage terms at 10% it is above the OECD average at 8% and far above the EU's 4% (Figure 7). Particularly striking are the negative values for the United States (US\$27b or -9%) and India (US\$76b or -14%). The US spends a lot on food stamps and the like for low-income families, while in India the rise in staple food consumer subsidies was enormous earlier this century: spending rose from US\$12 billion in 2000 to \$152 billion in 2013 before slipping back to \$76 billion in 2019. Similarly in the US, expenditure rose from less than \$2 billion in 2000 to \$40 billion at the peak of the price spike in 2011-12, and was still \$27 billion in 2019. For the full sample of 54 countries, though, the percentage CTE has more than doubled since the early 2000s, from 5% to 12%, as the negative impact on consumers of market access barriers far outweighs any positive effects of food subsidies. Australia and other food-exporting countries nonetheless benefit from direct consumer subsidies insofar as they expand the global demand for farm products – although there is evidence for India that consumers simply switch from less-preferred coarse grains to now-subsidized rice and wheat rather than expand their overall food intake greatly (Jensen & Miller, 2011). Breakdowns by product of those consumer supports are provided in Appendix Table A3 and Table A4.

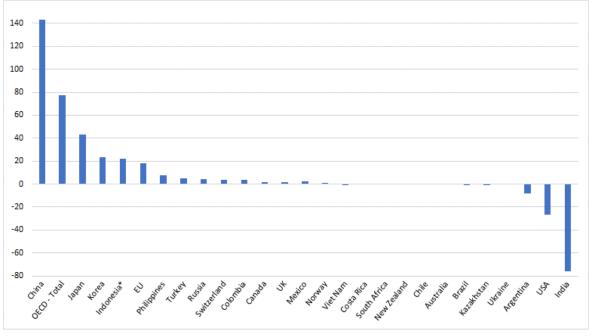


Figure 6 Aggregate agricultural consumer tax equivalent (CTE) at farm gate, by country, 2019 (current US\$ billion)

Source: OECD (2021).

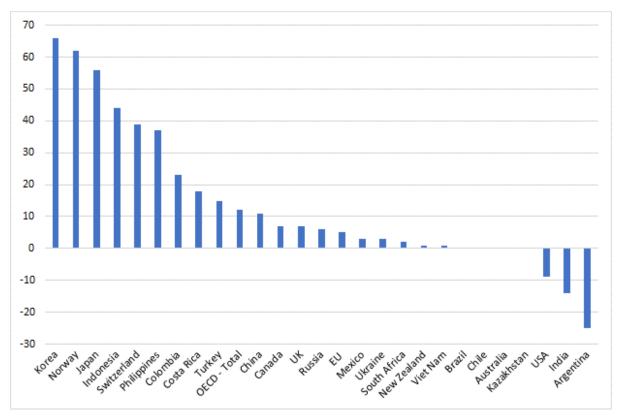


Figure 7 Percentage agricultural consumer tax equivalent (CTE) at farm gate, by country, 2019 (%)

Source: OECD (2021).

3 Basic Economics of Reducing Domestic Supports

3.1 Effects in supporting countries

The economics of lowering domestic supports are similar to the effects of opening to trade via lowering border restrictions, insofar as they promote domestic production and hence reduce net imports. The gains from such reform can come from more production specialization, the value of which is becoming greater as global value chains increase in importance (Reardon & Minton 2021). As well, lowering domestic supports expands the scope for raising the variety of products available to domestic consumers and thus for increasing diet diversity and food safety and quality, the demands for which rise with per capita income. These benefits are more important the smaller a country is. This is because with less trade there is less scope in a small country for consumers to secure out-of-season fresh produce, and less likelihood that a weather shock (e.g. to crops) in one part of the country will be countered by an offsetting shock in the rest of the country. Reducing domestic support is thus becoming more important because weather shocks are becoming greater and more frequent thanks to climate change.

A cut to a domestic subsidy that supports production of a good in a large country, or in numerous smaller countries, raises global import demand for and hence the international price of that product. Unlike an import tariff, which applies only to imported goods, domestic subsidies can also support production of exported goods. A cut to domestic support to an exported good's production will still raise its international price, but it will do so through reducing its supply in international markets (just as does a cut in an export subsidy).

A difference to note between an import tariff and a production (or export) subsidy is that the former raises government revenue whereas a subsidy depletes government revenue. Thus by lowering domestic support, a reforming government opens the possibility of re-purposing those subsidy payments: instead of them lowering national economic welfare they can be invested in growth-enhancing public goods (e.g., rural education, health, R&D and infrastructure) or be used to provide targeted income transfers to reduce poverty and inequality directly.

3.2 Effects in non-reforming or non-assisting countries

The effect of reforms in subsidising countries on non-subsidising countries depends on how open the latter are to transmitting international price changes to their domestic markets and whether they are net importers or net exporters of the products concerned. Assuming they allow at least some price transmission, a rise in the international price of such products will reduce national economic welfare in countries importing those goods and raise it for countries exporting them.² But within each of those countries, net sellers of those goods will benefit from the price rise while net buyers will lose.

² A small exception is that if a country switches sufficiently from being a net importer to being a net exporter of a product subject to reduced assistance abroad, its national economic welfare will rise rather than fall in responding to the change in international prices (Anderson & Tyers 1993).

4 Modelling Framework and Data

4.1 Global trade model used

Our simulations to demonstrate the potential impact of removing domestic subsidies use the Global Trade Analysis Project Recursive Dynamic (GTAP-RD) model (Aguiar, Corong & van der Mensbrugghe 2019), based on the GTAP model (Hertel 1997; Corong et al. 2017). Use of this global computable general equilibrium (CGE) model enables us to capture inter-sectoral linkages within each country as well as between countries via international trade. The recursive dynamic specification enables us to project the global economy from the baseline 2014 database to 2019, including with upward sloping supply curves for land and specific natural resources (Aguiar, Corong & van der Mensbrugghe 2019).³

We use the latest available GTAP version 10.1 Data Base, with a base year of 2014 (Aguiar et al. 2019). The GTAP Data Base is available for 65 sectors in 147 countries and regions, which we aggregate to 56 countries/regions and 30 sectors in the current modelling. We further aggregate to 10 regions and 5 sectors when reporting many of the results. In addition, the countries are separated into high-income countries (HICs) and developing countries (DCs). Full details of the regional and sectoral aggregation are in Appendix Table A1 and A2.

4.2 Baseline data

Our focus is on running simulations from 2019 to demonstrate the impact of changes in domestic subsidy payments. The GTAP Data Base includes OECD domestic support data for 2014, which we update to 2019 (OECD 2021), the latest full year for which domestic support data are available pre-COVID19. The years 2020 and 2021 are unlikely to be representative years on because of disruptions to markets caused by COVID-19 and the economic stimulus policy responses to it.

The GTAP Data Base includes domestic support from the OECD for 12 sectors and 28 regions.⁴ The data include payments based on output (A2), intermediate input payments (B1+B3) and factor payments (B2, C, D, and E) (Huang & Aguiar 2019; Boulanger, Philippidis & Jensen 2019).⁵ Payments vary in the extent to which they are decoupled from current production, and some of them may even be welfare-improving for society (such as rewards for providing ecosystem services), in which case they likely fall into the WTO's 'Green Box' (see Section

 ³ With no upward slopes in the policy simulation year. The model is solved using GEMPACK software (Harrison et al. 2014).
 ⁴ Data are included for paddy, wheat, coarse grains, oilseeds, raw sugar, cotton, cattle & sheep, other animal products, raw milk, vegetables & fruit, other crops and wool. Regions included are Australia, New Zealand, China, Japan, Korea, Indonesia, Philippines, Viet Nam, India, Canada, US, Mexico, Argentina, Brazil, Chile, Colombia, Costa Rica, EU27, Iceland, Switzerland, Norway, Russian Federation, Ukraine, Kazakhstan, Turkey, Egypt, Israel and South Africa.
 ⁵ The OECD classifies policy measures into seven broad categories, A to G, based on whether the basis is explicitly linked or

⁵ The OECD classifies policy measures into seven broad categories, A to G, based on whether the basis is explicitly linked or not to current outputs or inputs and whether production is a prerequisite for receiving the payment (OECD 2021a). Category A1 covers market price support, A2 covers payments based on output, B covers payments based on input use, C covers payments based on current production, D covers payment based on non-current production with production required, E covers payments based on non-current production with production not required, F covers payments based on non-commodity criteria and G is miscellaneous payments (see OECD 2021a for details). The GTAP Data Base does not include OECD data for categories F and G, and market price support (A1) is excluded to avoid double counting with tariffs already in the GTAP Data Base (Boulanger, Philippidis & Jensen 2019).

2.1 above). For subsidies not tied to specific sectoral output, integration in the GTAP Data Base requires that assumptions be made to allocate these subsidies across sectors (Huang & Aguiar 2019; Boulanger, Philippidis & Jensen 2019).

We first project the global economy to 2019, from the latest currently available GTAP data for 2014, drawing on macroeconomic data on real GDP, population and workforce from the World Bank (2021). We start with the subsidies in the 2014 GTAP Data Base, including assumptions made in the database for integrating the OECD domestic support data.⁶ For example, where subsidies are not allocated to a particular sector in the OECD database, they need to be distributed across sectors in the GTAP Data Base using OECD production shares and GTAP factor shares, and we use these 2014 distributions as a starting point. Where updated data are available from the OECD database,⁷ we update subsidy rates for each country to 2019 by applying the appropriate proportional changes in the output, intermediate input and primary factor subsidy payments, relative to the value of production.⁸ For the farm sectors covered by the OECD database, this enables us to develop an updated GTAP database of domestic support payments that is more representative of 2019. For sectors not covered by the OECD database, we maintain the existing tax/subsidy rates (based on country input-output tables or IMF's government finance statistics).

4.3 Caveats

As with all modelling, numerous assumptions necessarily have to be made for the exercise to be tractable, and the values of myriad parameters such as elasticities have to be best guesses when reliable econometric estimates are unavailable. The modelling also assumes fixed aggregate employment, thereby overlooking national employment changes that could be associated with agricultural expansion in developing countries. In addition to the earlier discussion of GTAP and OECD domestic support data, two offsetting caveats in particular are worth mentioning here.

The first has to do with the extent to which the various forms of domestic support to farm households are decoupled from current production requirements. The most decoupled are often direct income payments, for example. In the GTAP Data Base, it is assumed all budgetary payments to farmers' outputs, inputs and primary factors encourage more output. This assumption means the results are overstated to some extent.⁹

The second caveat has the opposite bias and so offsets the first. It has to do with the price, income and Armington elasticities in the model. In the current study, we use the standard GTAP parameters (Aguiar et al. 2019). However, there is an argument that these may be too low for simulating permanent policy shocks. We undertook some sensitivity analysis with just the Armington elasticities of substitution in consumption between imported goods and domestic

⁶ We first correct a GTAP v10.1 Data Base issue that led to the overstatement of wool subsidies in the EU. We also modify the GTAP model code to separate primary factor subsidies from primary factor taxes, enabling us to directly target reductions in primary factor subsidies (rather than subsidies net of any taxes on primary factors, as in the standard GTAP model code). 7 http://www.oecd.org/agriculture/topics/agricultural-policy-monitoring-and-evaluation/

 ⁷ http://www.oecd.org/agriculture/topics/agricultural-policy-monitoring-and-evaluation/
 8 In a small number of cases, where this approach would lead to the value of subsidies significantly deviating from OECD support values, we apply a smaller proportional change or maintain 2014 subsidy rates.

⁹ Boysen-Urban et al. (2020) provide an estimate of that for an earlier period (2007) for the European Union.

products and between imported goods from different sources: by doubling those elasticities, the estimated price effects are slightly diminished but the change in quantities traded are far bigger, leading to significantly higher net exports by many developing countries. In this sense, our current results may be regarded as conservative.

5 Scenario Modelled and Results

5.1 Reform scenario

The scenario we focus on is full removal of domestic agricultural support in all countries from the 2019 updated GTAP Data Base. This includes elimination of production subsidies as well as domestic subsidies on primary factors and intermediate inputs (both domestically produced and imported) on all primary agriculture and processed food sectors (see sectors 1-19 in Appendix Table A2). The extent of domestic support to farmers is compared to the average applied import tariff equivalents at the border as a percent of imports in the updated GTAP Data Base (Table 3 and Table 4).¹⁰

	Domestic subsidies, 2019 ^b			Tariffs, 2014 ^c			
Region ^a	Primary agriculture	Processed foods	Total Ag&food	Primary agriculture	Processed foods	Total Ag&food	
Oceania	1.9	0.2	0.9	0.5	2.1	1.8	
North East Asia	5.1	0.1	2.5	15.0	11.7	13.3	
South East Asia	1.2	0.0	0.6	4.9	6.7	6.0	
South Asia	5.8	3.0	4.7	13.7	29.7	22.5	
North America	9.7	0.0	3.3	0.2	1.7	1.2	
Europe	15.5	0.4	5.3	3.2	7.0	5.6	
Latin America	1.7	0.0	0.8	3.4	4.8	4.3	
FSU	2.7	0.2	1.3	4.5	9.7	7.7	
MENA	0.4	0.2	0.3	6.5	5.7	6.0	
SSA	0.2	0.4	0.3	6.5	11.1	9.8	
HICs	12.8	0.2	4.2	2.9	6.2	5.1	
DCs	3.4	0.4	1.9	9.6	9.2	9.4	
WORLD	5.7	0.3	2.7	7.3	7.9	7.7	

Table 3 Subsidies and tariffs by aggregate region in the updated GTAP Data Base, primary agriculture and processed foods (%)

^a See Appendix Table A1 for details of regions, including the classification of high-income and developing countries. ^b Average subsidy on output (including total subsidy payments on output, intermediate inputs and primary factor inputs),

weighted by the value of output at market prices.

^c Average tariff weighted by imports at cif prices, excluding intra-EU trade.

Source: Authors' calculations from updated 2019 GTAP database.

¹⁰ The applied tariffs are import-weighted averages over each bilateral trade, many of which are below MFN rates because of a customs union or free trade agreement. These are not updated in the current study, so remain at their 2014 GTAP levels.

	Domestic subsidies, 2019 ^a			Tariffs, 2014 ^b		
	HICs	DCs	WORLD	HICs	DCs	WORLD
Rice ^c	5.0	2.8	3.0	15.9	10.7	11.5
Wheat	14.4	5.1	7.9	29.1	6.8	9.4
Coarse grains	14.2	3.9	6.9	6.9	26.8	22.0
Vegetable oils ^c	5.7	1.4	2.4	1.4	11.5	8.9
Sugar ^c	2.2	1.8	1.9	9.8	10.4	10.3
Cotton	25.3	11.0	13.6	0.5	0.6	0.6
Beef & lamb ^c	3.4	0.8	1.8	11.6	7.5	9.1
Pork & poultry ^c	4.2	1.2	2.3	12.8	8.1	10.0
Dairy ^c	3.8	0.9	2.3	8.8	6.6	7.1
Wool	4.8	2.4	2.8	1.9	3.4	2.8
Other crops and processed food ^d	3.2	1.8	2.3	3.2	7.9	5.4

Table 4 Average domestic support and tariffs in the updated GTAP Data Base, by agricultural sector (%)

^{*a*} Average subsidy applied on output, weighted by the value of output at market prices.

^b Average tariff weighted by imports at cif prices, excluding intra-EU trade.

^c Includes the raw and processed sectors.

^d Includes the vegetables & fruit, other crops and other food sectors.

Source: Source: Authors' calculations from updated 2019 GTAP Data Base.

Clearly there is a wide range of domestic support levels across products and across regions. They are mostly on primary products rather than processed food.¹¹ The largest rates of domestic support are in high-income countries plus China and India, whereas tariffs on farm products are spread across both high-income and developing countries.

We present some overall macroeconomic results, including impacts on real GDP, output, trade and farm incomes, before turning to a range of sectoral results for various agricultural and food sectors. Interpreting the results is helped by being aware of the shares of each region in global production and consumption of each sector's output. Those shares are summarised in Appendix Tables A7 and A8.

5.2 Macroeconomic results

Removing all domestic supports to farmers globally would boost real global GDP by US\$4.7 billion per year. While this is a trivial share of global GDP, its proportional impact on the GDP of some regions is considerably higher because there is a substantial cross-country spread in the economic consequences of this reform (column 1 of Table 5). These changes in GDP are the net result of removal of own-country domestic support programs plus removal of domestic support programs in the rest of the world. Regions reducing domestic support generally experience increases in real GDP, including Europe, North America and South Asia (due to India). For the North East Asia region, there is a reduction in real GDP for China, where the positive impact on net exports is not sufficient to offset the reduction in investment and

¹¹ As earlier discussed, all OECD subsidies need to be allocated to specific primary sectors to integrate domestic support into the GTAP Data Base.

household consumption and in the country's international terms of trade (shown in Appendix Table A9). Figure 8 decomposes the total impact on GDP into the proportion due to reforms in HICs and DCs. Of the total global gains from eliminating farm product subsidies, approximately 60% is due to reform by developing countries.

	US\$m	%
Oceania	356	0.02
North East Asia	-1,350	-0.01
South East Asia	-382	-0.01
South Asia	2,031	0.06
North America	2,058	0.01
Europe	2,036	0.01
Latin America	1,166	0.02
FSU	-482	-0.02
MENA	-251	-0.01
SSA	-464	-0.02
HICs	5,134	0.01
DCs	-417	0.00
WORLD	4,717	0.01

Table 5 Simulated change in real GDP for aggregate regions, 2019 (US\$m and %)

Source: Authors' simulation results.

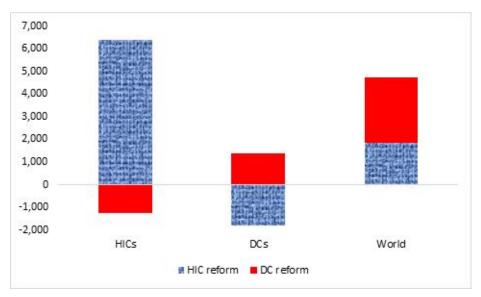


Figure 8 Approximate contribution of HIC and DC reform to total GDP change, 2019 (%)

Source: Authors' simulation results.

Removal of own-country policies generally adds to own-country GDP gains, but removal of those policies globally raises agricultural prices in international markets. This could be an extra benefit, or lower the gain to a country, depending on whether it is a net exporter or net importer

of the farm products whose prices have risen. Those price rises range from 3 to 11% depending on the product. There is an expansion of farm output in non-subsidising countries in response to the rise in the international prices but, since the reform is a net reduction in producer incentives, global output shrinks. The shrinkage is small though: just 1% in total for food and agriculture. High-income countries' output shrinks by several times that global average while output in developing countries expands, especially in Latin America (Table 6). Removal of domestic supports causes both primary agriculture and processed food production to fall most in Europe and next in North America, and to expand most (proportionately) in Oceania but also in most developing country regions (the main exception being South Asia). This is consistent with the high incidence of domestic support in the former regions and India and their nearabsence in Oceania (Table 4).

	Primary agriculture	Processed foods
Oceania	2.3	1.4
North East Asia	-0.2	-0.3
South East Asia	0.4	0.6
South Asia	-1.1	-2.1
North America	-1.9	-0.5
Europe	-7.2	-3.6
Latin America	1.8	0.1
FSU	0.6	0.0
MENA	2.9	0.6
SSA	1.8	0.4
HICs	-5.0	-2.3
DCs	0.5	0.0
World	-0.9	-1.0

Table 6 Simulated change in real output by aggregate region and sector, 2019 (%)

Source: Authors' simulation results.

Most of the national economic gains from removing domestic supports accrue to the reforming countries, notably North America and Europe. However, developing countries, including those that have no such support programs are affected by the reform's impact on their international terms of trade (see Table A9). The non-subsidising countries that are net importers of those products that are no longer supported elsewhere lose economic welfare, because of the rise in the price of those imports, while those that are net exporters of supported products gain. In terms of real GDP, East Asia would be a net loser (-\$1.7b) as would Africa, the Middle East and the former Soviet Union (-\$1.2b) while South Asia would gain more than \$2b and Latin America \$1.2b (Table 5).

The aggregate trade effects of domestic support reforms are not huge, because they occur in both exporting and importing countries and so offset each other somewhat, unlike for tariffs which by design all reduce trade. Table 7 shows the change in real exports and imports of primary agricultural and processed foods for each aggregate region. These results indicate that DCs increase primary agricultural exports by 10.2%, with a smaller 1.2% increase in exports of processed foods. HICs, on the other hand, reduce primary agricultural exports by 8.5% and

processed food exports by 3.4%. While imports of primary agricultural products increase by 2.8% in HICs, they reduce by 1.9% in DCs, with processed food imports reducing globally by 1.4%. The changes in each country's international terms of trade affect trade of all sectors: exports of primary agricultural, processed foods and all exports from each aggregate region to the other aggregate regions are reported in Appendix Table A10.

	Real exp	ports	Real imp	oorts
	Primary agriculture	Processed foods	Primary agriculture	Processed foods
Oceania	5.7	3.5	0.8	-1.3
North East Asia	4.9	3.4	-1.2	-0.8
South East Asia	6.6	2.5	-0.8	-0.6
South Asia	3.9	-10.1	-0.7	0.1
North America	-3.3	1.9	0.9	-1.3
Europe	-12.8	-5.3	3.4	-1.7
Latin America	8.3	1.6	-0.9	-0.6
FSU	7.9	1.5	-2.8	-2.3
MENA	22.3	4.3	-4.3	-1.4
SSA	19.9	3.1	-3.7	-2.3
HICs	-8.5	-3.4	2.8	-1.3
DCs	10.2	1.2	-1.9	-1.5
WORLD	0.2	-1.4	0.2	-1.4

Table 7 Simulated change in export and import volumes of farm products, aggregate regions, 2019 (%)

Source: Authors' simulation results.

How would these reforms affect net farm incomes in the world's various regions as prices and quantities of factors employed on farms change as a result of these global farm policy reforms? Table 8 shows very considerable differences in impacts across regions. For Southeast Asia farmers' incomes would be 3% higher on average, in Sub-Saharan Africa they would be 4% higher, and in Latin America and the Middle East (and Oceania) they would be about 6% higher. Of course that reform would lower net farm incomes in Europe (by one-sixth) and North America (by one-eighth), but there would be a fall (4%) in South Asia as well, because of the removal of India's massive farm input subsidies.

	US\$m	%
Oceania	2,262	6.6
North East Asia	-32,318	-3.5
South East Asia	8,225	3.3
South Asia	-18,678	-4.3
North America	-24,166	-12.4
Europe	-54,639	-17.4
Latin America	15,441	6.1
FSU	2,553	2.7
MENA	5,358	5.5
SSA	10,185	4.2
HICs	-79,907	-15.3
DCs	-5,869	-0.3
WORLD	-85,776	-3.0

Table 8 Simulated change in net farm income,^a aggregate regions, 2019 (US\$m and %)

^a Total factor returns from primary agriculture sectors.

Source: Authors' simulation results.

5.3 Select sectoral results

How the global gain from removing agricultural domestic supports (\$4.7b) is contributed to by various commodity programs can be seen by examining the relative impact of reform in different sectors. It reveals that crops account for 60% of that global gain from domestic support reform, and livestock products 22% (of which beef & lamb contribute 18%), with other processed foods responsible for the remaining 18%. Crops dominate the gain to North America and South Asia, while livestock (especially pork & chicken) dominate Europe's gain. The losses to East Asia, Africa and the Middle East are predominantly due to the removal of crop supports.

The effects of reform on global outputs (which equal intermediate input and final good consumption), exports (which equal imports) and international prices are reported by sector in Table 9. Global output/consumption declines by less than 2% in any sector, while average export prices rise by between 3 and 11%. International trade alters, as countries respond to the new incentives that allow them to more easily exploit their comparative advantages. With domestic support removed, the sectoral trade changes are less than 4% and are negative for some sectors while tariffs remain in place.

In what follows we further disaggregate those sectoral results from removing domestic supports so as to show their effects on various regions. Six case studies are reported: cotton, rice, beef & lamb, coarse grains plus oilseeds (because they are major inputs into livestock production), along with processed vegetable oils, pork & poultry (because it is consumed so much in developing countries) and dairy products.

	Real output	Real exports	Export prices
Rice ^a	-0.7	-0.6	5.1
Wheat	-0.5	-1.8	9.1
Coarse Grains	-0.7	-1.1	7.6
Vegetable Oils ^a	-0.7	-0.5	4.3
Sugar ^a	-0.6	-0.6	2.9
Cotton	-1.2	-0.6	10.8
Beef & Lamb ^a	-1.3	0.6	4.6
Pork & Poultry ^a	-1.4	-2.9	7.1
Dairy ^a	-1.6	-3.9	5.2
Vegetables & Fruit	-0.5	1.7	9.9
Other Crops	-1.2	2.3	7.9
Wool	-0.7	-0.8	3.3
Other Food	-0.7	-1.2	2.6

Table 9 Simulated change in world real output, real exports and export prices by sector, 2019 (%)

^a Aggregated raw and processed commodity.

Source: Authors' simulation results.

5.3.1 Cotton

Cotton production receives a great deal of domestic support in several large countries, most notably the United States and China, while tariff protection for this sector is minimal (Table 4). Because those supportive countries are so important in the global cotton market, the removal of their supports has a large impact on the price of cotton in the international market. In fact, at 11%, it is the largest of all the commodity price rises in column 3 of Table 9. That estimate is very similar to the 10 to 13% price rise estimates in Anderson and Valenzuela (2007) and a number of other analyses cited therein.

In our 2019 database, cotton comprises less than 0.1% of total global merchandise exports and so the impact of subsidy elimination is very minor globally. However, for countries such as the Sub-Saharan African cotton producers of Burkina Faso, Benin and the Rest Cotton SSA countries (including Chad and Mali: see Appendix Table A1), the impact of cotton subsidies is substantial. These countries contributed almost 10% of global cotton exports in 2019. Cotton comprises just over 2% of total exports from this region, while for Burkina Faso and Benin more than 10% of their national exports earnings come from cotton.

Table 10 summarises some results of the impacts of removing global cotton subsidies on this set of SSA countries and on select South Asian and MENA countries. Cotton output increases by one-eighth in those African countries, and their real cotton exports increase by one-quarter, with the value of cotton exports increasing by US\$622m per year net. The expansion of the cotton industry along with increased prices lead to a 19% or US\$442m increase in cotton farm net incomes in those African countries. The results are not as dramatic for South Asia because that region is far less focused on exporting raw cotton, much of which is destined for the domestic textile industry.

	Burkina	Benin	All SSA cotton	Pakistan	Bangladesh	Rest	Egypt	All
	Faso		countries ^b			South Asia ^c		MENA
Real output (%)	13.3	14.3	12.1	1.4	13.5	11.3	7.9	5.9
Export price (%)	5.4	6.0	4.5	3.0	7.8	5.5	2.7	3.7
Real exports (%)	22.3	16.6	24.9	31.4	19.4	20.2	42.5	43.6
Real imports (%)	8.9	4.4	-5.8	-12.7	-0.7	-4.0	-16.6	-10.5
Value of net exports (\$m)	153	88	622	108	14	44	83	185
Cotton net farm income (%) ^a	22.0	22.3	18.7	5.1	24.3	20.0	11.9	10.6
Cotton net farm income (\$m) ^a	110	67	442	214	137	30	88	135

Table 10 Simulated impact of domestic support removal on cotton in select export-increasing Sub-Saharan African, Asian and MENA countries, 2019 (US\$m and %)

^{*a*} Change in value of total factor returns.

^b Includes Burkina Faso, Benin, and RestCottonSSA (an aggregation of Côte d'Ivoire, Cameroon, Togo and the GTAP composite regions Rest of Western Africa including Mali and Rest of Central Africa including Chad).

^c Includes Nepal, Sri Lanka and the GTAP composite region Rest of South Asia (Afghanistan, Bhutan and Maldives).

Source: Authors' simulation results.

5.3.2 Rice

Removing domestic supports globally leads to rice output and exports expanding in some Asian countries (notably Pakistan and Thailand) and also in South America (but less so, see Table 11). Net incomes from rice production are higher in all countries shown in Table 11, again most notably in Pakistan and Thailand but also non-trivially in other SE Asian and Latin American countries.

Table 11 Simulated impact of domestic support removal on rice in select export-increasing Asian and Latin American countries, 2019 (US\$m and %)

	Thailand	Select SE Asia (RestSEAsia) ^b	Pakistan	Argentina	Brazil	Rest South America ^c
Real output (%)	2.6	0.1	6.4	2.6	0.3	1.1
Export price (%)	3.1	1.5	2.5	2.2	3.1	3.0
Real exports (%)	6.5	13.0	13.5	17.7	9.1	7.3
Real imports (%)	0.5	-3.4	5.0	-2.6	0.2	0.0
Value of net exports (\$m)	613	51	425	67	53	90
Paddy rice net farm income (%) ^a	10.1	1.8	10.0	9.9	4.2	6.1
Paddy rice net farm income (\$m) ^a	578	215	268	15	86	122

^{*a*} Change in value of total factor returns.

^b Brunei Darussalam, Cambodia, Lao PDR and the GTAP composite region Rest of Southeast Asia (Myanmar and Timor-Leste)

^c Bolivia, Ecuador, Paraguay, Peru, Uruguay, Venezuela and the GTAP composite region Rest of South America. Source: Authors' simulation results.

5.3.3 Beef and sheepmeat

Removing domestic cattle and sheep subsidies would benefit much of non-subsidising Latin America, which in 2019 accounted for around one-eighth of global production and almost one-fifth of global exports of those ruminant meats.

Specifically, domestic support removal raises Latin American export prices for these meats by 2 to 3%. That leads to increased real exports and lower real imports for the countries shown in Table 12, with the value of net exports increasing by more than \$600m for Latin America. There are also sizeable increases in net income from raising these livestock, with farm incomes increasing by almost \$900m for the region.

	Argentina	Caribbean	Rest South America ^b	All Latin America
Real output (%)	0.3	0.9	1.5	-0.1
Export price (%)	3.2	1.8	2.1	3.1
Real exports (%)	4.2	9.7	8.1	1.9
Real imports (%)	-3.3	-3.7	-0.2	-1.0
Value of net exports (\$m)	107	88	282	624
Cattle and sheep net farm income (%) ^a	5.1	6.1	5.5	3.0
Cattle and sheep net farm income (\$m) ^a	161	80	226	883

Table 12 Simulated impact of domestic support removal on the beef and sheepmeat sector in select exportincreasing Latin American countries, 2019 (US\$m and %)

^{*a*} Change in value of total factor returns.

^b Bolivia, Ecuador, Paraguay, Peru, Uruguay, Venezuela and the GTAP composite region Rest of South America. Source: Authors' simulation results.

5.3.4 Coarse grains

Coarse grains (the vast majority of which is maize) are important export items in numerous Latin American and other developing countries. Removal of coarse grain domestic supports globally leads to export price rises and output expansions in those industries in the countries shown in Table 13. Not surprisingly the net farm income from these activities also rises, by between 5% and 11%.

Table 13 Simulated impact of domestic support removal on the coarse grain sector in select export-increasing
countries, 2019 (US\$m and %)

	Argentina	Brazil	Chile	Ukraine	Thailand
Real output (%)	2.5	1.0	5.1	2.0	1.2
Export price (%)	4.1	4.8	5.3	5.9	4.6
Real exports (%)	3.9	2.5	6.9	2.2	2.0
Real imports (%)	-2.0	0.3	1.1	-0.8	-0.1
Value of net exports (\$m)	398	354	30	380	20
Coarse grain net farm income (%) ^a	8.1	4.5	11.2	9.1	7.9
Coarse grain net farm income (\$m) ^a	358	324	24	225	44

^{*a*} Change in value of total factor returns.

Source: Authors' simulation results.

5.3.5 Oilseeds, oils and meal

Results for oilseeds and derivative products are in Tables 14 and 15. Table 14, for the unprocessed form such as soybean, reveals that farm incomes would rise by as much as 14% and exports would rise considerably too. In Table 15, oils are included because they are additional to seeds export in South America and are the main form of export item (palm oil) for Southeast Asia. For those five countries alone, the value of net exports of these products would be higher by \$5.8 billion per year.

	Caribbean	Rest South America ^b	Nigeria	Mozambique	All SSA
Real output (%)	2.7	7.0	0.8	8.5	1.4
Export price (%)	5.3	3.5	0.9	2.8	2.4
Real exports (%)	3.7	10.5	21.8	13.0	14.1
Real imports (%)	0.4	0.2	-4.6	4.3	-0.2
Value of net exports (\$m)	22	624	63	22	418
Oilseed net farm income (%) ^a	8.8	13.7	1.7	11.7	3.9
Oilseed net farm income (\$m) ^a	92	462	70	20	658

Table 14 Simulated impact of domestic support removal on the oilseed sector in select export-increasing Latin American and African developing countries, 2019 (US\$m and %)

^{*a*} Change in value of total factor returns.

^b Bolivia, Ecuador, Paraguay, Peru, Uruguay, Venezuela and the GTAP composite region Rest of South America. Source: Authors' simulation results.

Table 15 Simulated impact of domestic support removal on the oilseed and processed vegetable oils & fat sectors in select export-increasing Asian and South American countries, 2019 (US\$m and %)

	Indonesia	Malaysia	Philippines	Argentina	Brazil
Real output (%)	1.6	1.7	3.2	0.4	2.0
Export price (%)	2.4	2.5	1.9	3.3	4.5
Real exports (%)	2.6	2.6	8.8	1.0	3.2
Real imports (%)	-1.9	-0.6	-1.3	1.5	0.5
Value of net exports (\$m)	1,026	715	78	985	2,951
Oilseed net farm income (%) ^a	3.9	6.0	5.3	7.0	6.0
Oilseed net farm income (\$m) ^a	766	702	124	698	1,278

^a Change in value of total factor returns.

Source: Authors' simulation results.

5.3.6 Pork and poultry

Non-ruminant meat production and consumption is common in most developing countries. Subsidies to its production are not huge but they are larger than for beef & sheepmeat and again are mostly in high-income countries (Table 4). The impact on farmer net incomes from these activities range from 2 to 12% for the countries shown in Table 16.

	Indonesia	Malaysia	Thailand	Ukraine	Morocco
Real output (%)	0.2	0.6	4.9	2.0	0.6
Export price (%)	1.7	2.6	2.9	4.8	3.1
Real exports (%)	14.9	5.3	21.3	4.9	21.9
Real imports (%)	-4.2	-4.2	0.3	-8.4	-10.1
Value of net exports (\$m)	75	31	743	50	18
Other animals net farm income (%) ^a	1.7	4.2	12.1	8.5	4.9
Other animals net farm income (\$m) ^a	127	130	395	73	53

Table 16 Simulated impact of domestic support removal on the pork and poultry sector in select export-expanding countries, 2019 (US\$m and %)

^{*a*} Change in value of total factor returns.

Source: Authors' simulation results.

5.3.7 Dairy products

The rate of subsidization of dairy is similar to that for pork&poultry, so its removal has a similar positive effect on exports and farm incomes of many developing countries, three of which are shown in Table 16, again just by way of illustration.

Table 17 Simulated impact of domestic support removal on the dairy sector in select export-expanding countries,
2019 (US\$m and %)

	Argentina	Chile	Ukraine
Real output (%)	0.5	0.3	0.8
Export price (%)	2.3	1.9	2.5
Real exports (%)	3.7	6.0	4.1
Real imports (%)	-2.5	-2.8	-7.1
Value of net exports (\$m)	80	20	28
Raw milk net farm income (%) ^a	5.1	4.3	7.2
Raw milk net farm income (\$m) ^a	103	23	69

^a Change in value of total factor returns.

Source: Authors' simulation results.

6 Concluding Comments

It is nearly two decades since the end of the 1995-2004 implementation of the Uruguay Round Agreement on Agriculture (URAA) by WTO member countries. That Agreement brought disciplines to market access barriers (which were tarrified and bound), to export subsidies, and to domestic support to farmers in member countries. Tariffs have been lowered further in numerous countries since then, and remaining export subsidies on farm products were removed for most countries in 2015 or soon thereafter. Domestic support to farmers has risen in some countries, however, sometimes as a way of re-instrumenting the support to producers that was eroded by tariff reform. Such supports are now the focus of attention at the WTO, and will be on the agenda of the biennial WTO Trade Ministerial meeting in late 2021.

It is possibly going to become increasingly important to bring stronger disciplines to domestic support to ensure such measures don't become a substitute for tariffs. That is why the present study, commissioned by the New Zealand Ministry for Primary Industries, sought to estimate the impacts of agricultural domestic supports globally and in both farm-supporting countries and other – especially developing – economies. It has done so by calibrating the database of the global economywide GTAP model to 2019 and then shocking the model by removing domestic supports globally.

The estimated impacts of globally removing domestic support are non-trivial. The negative impacts on farmers are confined to just North America, Europe, Northeast Asia and India whereas farmers in most other regions gain. As well, removing domestic supports benefits government budgets and thus would allow society to re-purpose that spending to achieve more socially desirable objectives, even after compensating losing farmers (World Bank & IFPRI 2021; FAO, UNDP & UNEP 2021). That could include investing in growth-enhancing rural public goods such as education, health, transport and communication infrastructure, and agricultural research. It could also include paying farmers and others for their provision of more ecosystem services if they are currently under-provided – although care in incentive design is required to ensure optimal provision (see Wunder et al. 2020). For these reasons it may be easier to multilaterally negotiate cuts in domestic support than cuts in tariffs on farm products.

References

- Aguiar, A., Chepeliev, M., Corong, E.L., McDougall, R., & van der Mensbrugghe, D. (2019). The GTAP Data Base: Version 10. *Journal of Global Economic Analysis*, 4(1), 1-27.
- Aguiar, A. Corong, E. L., & van der Mensbrugghe, D. (2019). *The GTAP Recursive Dynamic Model (manuscript)*. Center for Global Trade Analysis (GTAP), Purdue University. Available at https://mygeohub.org/groups/gtap/dynamic-docs
- Anderson, K. (ed.) (2009). *Distortions to Agricultural Incentives: A Global Perspective, 1955-*2007. London: Palgrave Macmillan and Washington DC: World Bank.
- Anderson, K., & Martin, W. (2005). Agricultural Trade Reform and the Doha Development Agenda. *The World Economy* 28(9): 1301-27.
- Anderson, K., & Martin, W. (eds.) (2006). *Agricultural Trade Reform and the Doha Development Agenda*. London: Palgrave Macmillan and Washington DC: World Bank.
- Anderson, K., Martin, W. & Valenzuela, E. (2006). The Relative Importance of Global Agricultural Subsidies and Market Access. *World Trade Review* 5(3): 357-76.
- Anderson, K., & Tyers, R. (1993). More on Welfare Gains to Developing Countries from Liberalising World Food Trade. *Journal of Agricultural Economics* 44(2): 189-204, May
- Anderson, K., & Valenzuela, E. (2007). The World Trade Organization's Doha Cotton Initiative: A Tale of Two Issues. *The World Economy* 30(8): 1281-1304.
- Anderson, K., & Valenzuela, E. (2020). *International Agricultural Subsidies and Their Impact on Australian Agriculture*. Canberra: AgriFutures Australia. Retrieved from <u>https://www.agrifutures.com.au/product/impact-of-international-agricultural-</u> <u>subsidies-on-australian-agriculture/</u>
- Boulanger, P., Philippidis, G., & Jensen, H. G. (2019). Domestic Support in the European Union. In A. Aguiar, M. Chepeliev, E. L. Corong, R. McDougall & D. van der Mensbrugghe (Eds.), *The GTAP Data Base: Version 10*: Global Trade Analysis Project.
- Boysen-Urban, K., Brockmeier, M. Jensen, H.J. and Boysen, O. (2020). Measuring the Trade Restrictiveness of Domestic Support using the EU Common Agricultural Policy as an Example. *Journal of Agricultural Economics* 71(1): 27–49.
- Corong, E. L., Hertel, T. W., McDougall, R., Tsigas, M. E., & van der Mensbrugghe, D. (2017). The Standard GTAP Model, Version 7. *Journal of Global Economic Analysis* 2(1): 1-119.
- FAO, UNDP & UNEP (2021). A Multi-Billion-Dollar Opportunity: Repurposing Agricultural Support to Transform Food Systems. Rome: FAO, UNDP and UNEP.

- Harrison, J., Horridge, M., Jerie, M. & Pearson, K. (2014). *GEMPACK Manual, GEMPACK Software*. Centre for Policy Studies: Melbourne. ISBN 978-1-921654-34-3. Available at <u>www.copsmodels.com/gpmanual.htm</u>
- Hertel, T.W. (Ed.). (1997). *Global Trade Analysis: Modeling and Applications*. Cambridge and New York: Cambridge University Press.
- Huang, H., & Aguiar, A. (2019). Agricultural Domestic Support. In A. Aguiar, M. Chepeliev,
 E.L. Corong, R. McDougall & D. van der Mensbrugghe (Eds.), *The GTAP Data Base: Version 10*: Global Trade Analysis Project.
- Jensen, R.T. & Miller, N.H. (2011). Do Consumer Price Subsidies Really Improve Nutrition?' *Review of Economics and Statistics* 93(4): 1205-23.
- OECD (2016). OECD's PSE and Related Indicators of Agricultural Support: Concepts, Calculation, Interpretation and Use (The PSE Manual). Paris: OECD, March.
- OECD (2021). *Producer and Consumer Support Estimates*. Online database accessed at www.oecd.org/agriculture/topics/agricultural-policy-monitoring-and-evaluation/
- OECD (2021a). Agricultural Policy Monitoring and Evaluation 2021: Addressing the Challenges Facing Food Systems. Paris: OECD.
- Reardon, T. & Minton, B. (2021). Food Value Chain Transformation in Developing Regions.
 Ch. 12 (pp. 397-437) in K. Otsuka and S. Fan (Eds.), *Agricultural Development: New Perspectives in a Changing World*. Washington DC: International Food Policy Research Institute.
- World Bank (2021). *World Development Indicators*. Online database accessed at <u>https://databank.worldbank.org/</u>
- World Bank and IFPRI (2021). *Repurposing Agricultural Policies and Support: Options to Promote Sustainable Development.* Washington DC: World Bank and IFPRI, June.
- Wunder, S., Börner, J., Ezzine-de-Blas, D., Feder, S. & Pagiola, S. (2020). Payments for Environmental Services: Past Performance and Pending Potentials. *Annual Review of Resource Economics* 12: 209-34.

Appendix Tables

Table A1 Regions modelled

No.	Regions modelled	Original GTAP regions ^a	Aggregated regions for reporting	High Income/ Developing Country status
1	Australia	aus	Oceania	HIC
2	New Zealand	nzl	Oceania	HIC
3	Pacific Islands	хос	Oceania	DC
4	China	chn	North East Asia	DC
5	Hong Kong	hkg	North East Asia	DC
6	Japan	jpn	North East Asia	HIC
7	Korea	kor	North East Asia	DC
8	Taiwan	twn	North East Asia	DC
9	Rest East Asia	mng xea	North East Asia	DC
10	Indonesia	idn	South East Asia	DC
11	Malaysia	mys	South East Asia	DC
12	Philippines	phl	South East Asia	DC
13	Singapore	sgp	South East Asia	DC
14	Thailand	tha	South East Asia	DC
15	Viet Nam	vnm	South East Asia	DC
16	Rest SE Asia	brn khm lao xse	South East Asia	DC
17	Bangladesh	bgd	South Asia	DC
18	India	ind	South Asia	DC
19	Pakistan	pak	South Asia	DC
20	Rest South Asia	npl lka xsa	South Asia	DC
21	Canada	can	North America	HIC
22	US	usa	North America	HIC
23	Mexico	mex	Latin America	DC
24	Argentina	arg	Latin America	DC
25	Brazil	bra	Latin America	DC
26	Chile	chl	Latin America	DC
27	Colombia	col	Latin America	DC
28	Costa Rica	cri	Latin America	DC
29	Caribbean	gtm hnd nic pan slv xca dom jam pri tto xcb	Latin America	DC
30	Rest South America	bol ecu pry per ury ven xsm	Latin America	DC
31	EU27	aut bel bgr hrv cyp cze dnk est fin fra deu grc hun irl ita lva	Europe	HIC

No.	Regions modelled	Original GTAP regions ^a	Aggregated regions for reporting	High Income/ Developing Country status
		ltu lux mlt nld pol prt rou svk svn esp swe		
32	UK	gbr	Europe	HIC
33	Switzerland	che	Europe	HIC
34	Norway	nor	Europe	HIC
35	Russian Federation	rus	FSU	DC
36	Ukraine	ukr	FSU	DC
37	Res tEurope	xef srb alb xer	Europe	DC
38	Kazakhstan	kaz	FSU	DC
39	Rest FSU	blr xee kgz tjk xsu arm aze geo	FSU	DC
40	Turkey	tur	Europe	DC
41	Egypt	egy	MENA	DC
42	Israel	isr	MENA	DC
43	Rest Middle East	bhr irn irq jor kwt Ibn omn pse qat sau syr are xws	MENA	DC
44	Morocco	mar	MENA	DC
45	Tunisia	tun	MENA	DC
46	Ghana	gha	SSA	DC
47	Nigeria	nga	SSA	DC
48	Senegal	sen	SSA	DC
49	Kenya	ken	SSA	DC
50	Mozambique	moz	SSA	DC
51	South Africa	zaf	SSA	DC
52	Burkina Faso	bfa	SSA	DC
53	Benin	ben	SSA	DC
54	Rest Cotton SSA	civ cmr tgo xwf xcf	SSA	DC
55	Rest Africa	xnf gin xac eth mdg mwi mus rwa sdn tza uga zmb zwe xec bwa nam xsc	SSA	DC
56	Rest of World	xna xtw	North America	DC

^a See <u>https://www.gtap.agecon.purdue.edu/databases/regions.aspx?version=10.211</u> for full details of the GTAP countries and regions.

No.	Sectors modelled	Original GTAP sectors ^a	Aggregated sectors for reporting
1	Paddy	pdr	Primary agriculture
2	ProcRice	pcr	Processed foods
3	Wheat	wht	Primary agriculture
4	CoarseGrains	gro	Primary agriculture
5	Oilseeds	osd	Primary agriculture
6	VegOilsFat	vol	Processed foods
7	SugarRaw	c_b	Primary agriculture
8	Sugar	sgr	Processed foods
9	Cotton	pfb	Primary agriculture
10	CattleSheep	ctl	Primary agriculture
11	Beeflamb	cmt	Processed foods
12	OtherAnimal	оар	Primary agriculture
13	PorkPoultry	omt	Processed foods
14	RawMilk	rmk	Primary agriculture
15	Dairy	mil	Processed foods
16	VegFruit	v_f	Primary agriculture
17	OtherCrops	ocr	Primary agriculture
18	Wool	wol	Primary agriculture
19	OtherFood	ofd	Processed foods
20	BevTob	b_t	Other manufactured
21	Forestry	frs	Other primary
22	Fishing	fsh	Other primary
23	FuelPPrMinPr, Non-ferrous metals	coa oil gas oxt p_c nmm nfm	Other primary
24	Iron & steel	i_s	Other manufactured
25	TexLeaWap	tex wap lea	Other manufactured
26	WoodPapProds	lum ppp	Other manufactured
27	Chems, pharms, rubber & plastics	chm bph rpp	Other manufactured
28	Electronics	ele eeq	Other manufactured
29	OtherManuf	fmp ome mvh otn omf	Other manufactured
30	Util_Svces	ely gdt wtr cns trd afs otp wtp atp whs cmn ofi ins rsa obs ros osg edu hht dwe	Services

^a See <u>https://www.gtap.agecon.purdue.edu/databases/contribute/detailedsector.asp#Sector65</u> for full details of the 65 GTAP sectors.

	Wheat	Maize	Barley	Rice	Sugar	Soybeans	Other oilseeds	Milk	Beef/Veal	Sheep meat	Wool	Pig meat	Poultry meat	Cotton
Argentina	-117	-149				-3,974	-56	1-26	-1,695			49	-750	
Australia	0		0	0	0			0			0	0	0	0
Brazil	105	0		0	0	0		0	0			0	0	0
Canada	0	0	0			0	0	1,598					132	
Chile	0	0			14			0	0			0	0	
China	6,975	7,509		7,620	5,406	8,913	5,181	8,797	9,088	6,278		23,367	13,751	3,781
Colombia		603		530	0		169	450	26			269	653	
Costa Rica				103	43			0	0			59	138	
EU27	671	0	49	519	368	0	0	-1	7,055	0		0	4,339	
India	224	1,048		-7 <i>,</i> 353	2,312	0	-65	-28,080	-269	0			3,730	519
Indonesia		1,495		9,369	1,930	0	-399	66	339			85	1,701	
Japan	0		275	11,157	1,469	0		5,575	4,908			5,274	429	
Kazakhstan	41	-6	1	-100			-64	0	205	0		0	0	-20
Korea			96	5,809		312		1,911	2,862			2,302	511	
Mexico	0	0	0	1	573	0		-65	0			35	559	
New Zealand	0	0	0					0	0	0	0	0	46	
Norway	57		45					316	234	0	0	124	132	
Philippines	89			3,490	616				104			1,671	1,050	
Russian Federation	-45	79	4		292		-395	643	1,471			1,693	518	
South Africa	67	0			139		0	0	0	0		0	0	
Switzerland	57	9	10		0		136	113	591	27		540	320	
Turkey	126	0	8		0		540	0	2,474	0			0	
UK	90	0	18		5		0	0	942	0		0	615	
Ukraine	0	0	0		182		-138	-51	0			164	0	
US	0	0	0	0	2,852	0		6,857	253	124	0	0	0	41
Viet Nam		1,495		-1,168	259				379			0	-1,027	

Table A3 Aggregate value of consumer tax equivalent, by product and country, 2019 (current US\$m per year)

Source: OECD (2021)

	Wheat	Maize	Barley	Rice	Sugar	Soybeans	Other oilseeds	Milk	Beef/Veal	Sheep meat	Wool	Pig meat	Poultry meat	Cotton
Argentina	-11	-17				-35	-18	-24	-23			10	-27	
Australia	0		0	0	0			0			0	0	0	0
Brazil	5	0		0	0	0		0	0			0	0	0
Canada	0	0	0					41					6	
Chile	0	0			4			0	0			0	0	
China	21	23		11	156	20	77	46	16	17		16	19	29
Colombia		52		83	0		30	23	1			30	24	
Costa Rica				127	49			0	0			46	60	
EU27	4	0	2	47	11	0	0	0	31	0		0	27	
India	1	36		-16	33	0	-4	-28	-13	0			53	6
Indonesia		97		57	461	0	-10	11	14			22	57	
Japan	0		37	220	na	0		100	39			101	12	
Kazakhstan	5	-5	-3	-54			-40	0	14	0		0	0	-14
Korea			84	152		48		98	42			65	46	
Mexico	0	0	0	0	65	0		0	0			1	9	
New Zealand	0	0	0					0	0	0	0	0	14	
Norway	75		72					62	73	0	0	45	106	
Philippines	14			154	99				10			40	33	
Russian Federation	-1	19	0.4		30		-8	5	27			24	7	
South Africa	8	0			47		0	0	0	0		0	0	
Switzerland	18	22	31		0		82	7	71	38		111	418	
Turkey	3	0	2		0		47	0	71	0			0	
UK	5	0	2		1		0	0	29	0		0	20	
Ukraine	0	0	0		307		-3	-2	0			11	0	
US	0	0	0	0	197	0		21	0.4	10	1	0	0	0
Viet Nam		80		-13	49				27			0	-27	

Table A4 Percentage consumer tax equivalent, by product and country, 2019 (%)

Source: OECD (2021)

	Wheat	Maize	Barley	Rice	Sugar	Soybeans	Other oilseeds	Milk	Beef/Veal	Sheep meat	Wool	Pig meat	Poultry meat	Cotton
Argentina	-363	-1,143				-4,858	-65	-884	-2,189			134	-686	
Australia	0	, -	0	0		0	0	1	0	0	0	0	0	0
Brazil	61	65		10	12	166		1	99			4	5	7
Canada	121	76	27			66	99	1,626	44			57	133	
Chile	0	0			4			0	0			0	0	
China	7,583	18,283		7,633	5,192	4,200	4,364	5,436	6,882	5,546		18,965	12,415	5,412
Colombia		144		456	0			447	25			210	618	
Costa Rica				44	74			0	0			50	133	
EU27	1,564	1	244	451	665	0	0	1,245	9,102	611		-229	4,448	
India	209	1,922		-8,748	3,648	0	-183	-32,087	-585	-23			3,541	629
Indonesia		4,135		7,717	1,495	6		15	194			56	3,594	
Japan	319		125	11,699	396	221		3,696	1,869			2,477	106	
Kazakhstan	85	-8	-13	-112			-141	46	326	28		6	45	-14
Korea			93	4,840		253		916	1,516			2,336	426	
Mexico	141	76	0	5	943	19		30	0			35	559	
New Zealand	0	0	0					0	0	0	0	0	46	
Norway	80		86					570	281	65	13	100	126	
Philippines		265		3,674	613				57			1,076	912	
Russian Federation	-123	353	13		374		-393	1,068	972			1,427	475	
South Africa	31	0			194		0	0	0	0		0	0	
Switzerland	37	12	16		37		24	480	527	14		497	267	
Turkey	225	26	56		33		448	-11	2,462	-3			-1	388
UK	159	0	31		3		0	-6	808	-1		-9	527	
Ukraine	0	0	0		224		-141	-27	24			146	0	
US	707	2,367	25	63	1,294	1,190		7,584	242	44	0	462	0	1,190
Viet Nam		567		-1,308	243				193			-268	-924	

Table A5 Aggregate value of assistance to producers by product and country, 2019 (current US\$m per year)

Source: OECD (2021).

	Wheat	Maize	Barley	Rice	Sugar	Soybeans	Other oilseeds	Milk	Beef/Veal	Sheep meat	Wool	Pig meat	Poultry meat	Cotton
Argentina	-11	-17				-35	-9	-24	-23			10	-27	
Australia	0		0	0		0	0	0	0	0	0	0	0	0
Brazil	5	0		0	0	0		0	0			0	0	0
Canada	0	0	0			0	0	41	0			0	6	
Chile	0	0			4			0	0			0	0	
China	21	23		11	156	20	77	46	16	17		16	19	55
Colombia		52		83	0			23	1			30	24	
Costa Rica				127	49			0	0			46	60	
EU27	5	0	2	47	12	0	0	0	31	0		0	27	
India	1	36		-16	36	0	-4	-28	-13	0			53	6
Indonesia		97		57	461	0		11	14			22	57	
Japan	59		138	220	128	86		111	41			101	12	
Kazakhstan	5	-5	-3	-54			-40	2	14	0		0	12	-14
Korea			160	152		503		98	42			65	46	
Mexico	21	1	0	9	65	23		1	0			1	11	
New Zealand	0	0	0					0	0	0	0	0	14	
Norway	87		81					73	98	69	93	38	103	
Philippines		14		154	99				10			40	33	
Russian Fed.	-1	19	0		30		-8	6	27			24	7	
South Africa	8	0			47		0	0	0	0		0	0	
Switzerland	18	22	31		0		82	29	71	38		111	418	
Turkey	6	2	4		0		60	0	71	0			0	37
UK	5	0	2		1		0	0	29	0		0	20	
Ukraine	0	0	0		307		-3	-2	0			11	0	
US	0	0	0	0	118	0		21	0	10	1	0	0	9
Viet Nam		80		-13	49				27			0	-27	

Table A6 NRA to producers by sector and country, 2019 (%)

Source: OECD (2021)

	Oceania	NE Asia	SE Asia	South Asia	North Amer.	Europe	Latin Amer.	FSU	MENA	SSA	All HICs	All DCs	% total agric. & food production
Rice ^b	0	44	21	25	1	1	5	0	2	2	6	94	7
Wheat	4	25	0	20	9	21	2	8	10	2	30	70	2
Coarse grains	1	33	4	4	17	12	11	5	3	11	29	71	3
Veg oils & fats ^b	1	30	14	7	10	12	16	3	1	4	22	78	8
Sugar ^b	2	24	11	9	8	10	20	4	3	9	20	80	3
Cotton	5	35	1	26	12	6	6	2	2	6	19	81	1
Beef & sheep ^b	4	22	2	3	20	14	12	8	4	10	37	63	11
Pork & poultry ^b	1	31	7	1	15	21	13	3	3	3	39	61	12
Dairy ^b	4	9	2	14	16	31	9	7	4	4	49	51	11
Other crops	1	34	8	11	5	14	8	3	5	10	20	80	15
Wool	9	61	1	5	0	10	5	4	3	2	19	81	0
Other processed food	1	28	6	4	17	25	8	3	4	4	47	53	26
All primary agriculture	2	30	8	12	10	13	10	4	4	7	24	76	44
All processed food	2	27	7	6	15	22	10	4	3	5	41	59	56
All agric. & proc. food	2	28	7	8	13	18	10	4	4	6	34	66	100

Table A7 Regional contributions to global output by product,^a 2019 updated GTAP Data Base (%)

^a Production value excluding output taxes. ^b Primary and processed sectors. Source: GTAP v10 Data Base, updated to 2019.

	Oceania	NE Asia	SE Asia	South Asia	North Amer.	Europe	Latin Amer.	FSU	MENA	SSA	All HICs	All DCs	% total agric. & food consumption
Rice ^b	0	43	15	26	1	1	6	0	3	5	5	95	7
Wheat	0	17	0	10	1	26	1	8	25	10	23	77	1
Coarse grains	0	26	6	10	2	6	7	3	10	31	7	93	2
Veg oils & fats ^b	1	33	9	18	3	11	9	3	4	10	13	87	5
Sugar ^b	2	5	10	16	8	16	17	7	8	11	24	76	2
Cotton	6	3	10	11	4	30	11	10	8	6	19	81	0
Beef & sheep ^b	1	19	2	2	16	16	12	10	4	18	33	67	11
Pork & poultry ^b	1	27	8	2	14	22	13	4	5	5	37	63	13
Dairy ^b	1	12	3	20	12	24	10	8	5	6	36	64	13
Other crops	1	22	7	14	6	16	8	4	7	15	22	78	16
Wool	0	73	2	9	0	10	1	4	1	1	10	90	0
Other processed food	2	23	6	5	19	23	9	3	5	5	50	50	30
All primary agriculture	0	26	7	16	5	13	7	5	8	14	17	83	31
All processed food	1	22	6	8	15	21	11	5	4	7	40	60	69
All agric. & proc. food	1	23	6	10	12	18	10	5	5	9	33	67	100

Table A8 Regional contributions to global household consumption,^a by product, updated 2019 GTAP Data Base (%)

^a Including private household spending on domestic and imported products. ^b Primary and processed sectors. Source: GTAP v10 Data Base, updated to 2019.

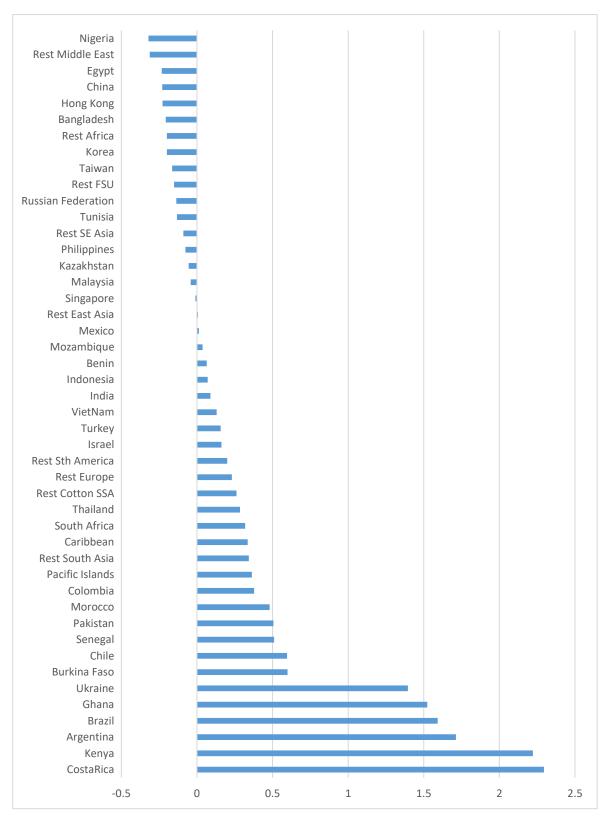


Table A9 Terms of trade change from removal of domestic supports, developing countries and regions, 2019 (%)

Source: Authors' simulation results.

	Oceania	NE Asia	SE Asia	South Asia	Nth Amer	Latin Amer	Europe	FSU	MENA	SSA	World
Oceania											
Primary agric.	5	5	6	-3	5	8	18	11	3	14	(
Proc foods	2	2	0	-4	6	-1	20	0	2	1	
All exports	-1	-1	-1	-1	0	-1	1	-1	0	1	-:
NE Asia											
Primary agric.	4	2	0	1	2	7	22	9	2	3	!
Proc foods	1	4	2	- 7	0	2	9	4	- 3	2	
All exports	1	0	0	0	1	1	0	0	0	1	
SE Asia		0		0	-	-	0	U	0	-	
Primary agric.	5	3	2	4	6	4	27	7	1	-3	
Proc foods	5 1	1	2	4	1	2	8	, 2	4	-3	
All exports	0	0	2	2	0	1	8 0	2	4	1	
South Asia	0	0	0	0	0	T	0	0	0	1	
	0	~	4	4	2		24	0	n	л	
Primary agric.	0	9	-1	-1	3	4	24	8	-2	-4 12	
Proc foods	-15	-12	-5	-5	-24	-14	-13	-9	-6	-13	-1
All exports	2	1	1	0	0	3	0	1	1	0	
Nth Amer											
Primary agric.	0	-7	-13	-5	-2	-4	17	-2	-4	3	-
Proc foods	4	4	0	4	2	-1	4	3	2	5	
All exports	1	-1	-1	-1	-1	0	0	0	0	0	-
Europe											
Primary agric.	-28	-22	-23	-22	-20	-25	-10	-14	-24	-24	-1
Proc foods	-10	-15	-11	-5	-9	-8	-4	-9	-7	-9	-
All exports	1	0	0	0	1	2	0	0	0	0	
Latin America											
Primary agric.	4	4	4	4	3	7	26	6	2	-2	
Proc foods	-1	1	1	-1	-1	1	8	-1	-1	0	
All exports	-1	-1	-1	-1	-1	-1	1	0	-1	-2	-
FSU											
Primary agric.	11	6	10	-4	0	28	14	2	6	13	
Proc foods	1	-1	0	-1	0	2	5	2	0	0	
All exports	0	0	0	-1	0	1	0	-1	0	2	
MENA							-				
Primary agric.	12	13	6	10	11	10	50	11	7	9	2
Proc foods	1	13	4	5	1	2	6	2	, 5	3	-
All exports	0	0	0	0	0	0	0	1	0	0	
SSA	5	0	5	5	0	5	5	±	5	0	
Primary agric.	14	15	11	8	17	13	40	11	7	9	2
Proc foods	2	13	3	8 7	0	2	40	1	2	3	2
				0	0				-1		
All exports World	-1	-1	1	U	0	0	1	1	-1	-1	
	1	1	1	1	1	1	n	n		л	
Primary agric.	1	-1	-1	-1	1	-1	3	-3	-4	-4	
Proc foods	-1	-1	-1	0	-1	-1	-2	-2	-1	-2	-
All exports	1	0	0	0	0	1	0	0	0	0	

Table A10 Changes in exports by aggregate region and sector, importing regions in columns (%)

Source: Authors' simulation results.

THE UNIVERSITY OF WAIKATO Te Whare Wananga o Waikato

WHERE THE WORLD IS GOING TE AHUNGA O TE AO

The University of Waikato Toll Free: 0800 WAIKATO