
TURN OVER

2010 SCHOLARSHIP EXAMINATION

PRACTICAL SECTION

DEPARTMENT Computer Science

COURSE TITLE Computer Science Scholarship

TIME ALLOWED Six hours with a break for lunch at the discretion of
the supervisor

NUMBER OF QUESTIONS Three

IN PAPER

NUMBER OF QUESTIONS Three

TO BE ANSWERED

GENERAL INSTRUCTIONS Candidates are to answer ALL THREE questions. All
questions are important. Answer as much of each
question as you can. Plan your time to allow a good
attempt at each question, but be aware that Question
3 is the most difficult and will take considerably longer
than the others.

SPECIAL INSTRUCTIONS Please hand in listings, notes and answers to written
questions, and a CD/DVD with your program/computer
work for each question. Please make sure that a copy
of each program is printed, or stored as a plain text file.
You cannot assume that the examiner has available
any special software that might be required to read
your files.

 Candidates may use any text or manual for reference
during the examination.

CALCULATORS PERMITTED Yes

-2-

(Question 1 - continued on next page)

1. What if? (Spreadsheet Use)

 In this question you are asked to use a spreadsheet to do calculations and to display the
results. We expect that the spreadsheet will be used for all calculations unless the
question states otherwise - you will be marked down for performing calculations by hand
and directly entering the results. Your work will be graded on three criteria.

 (i) The accuracy of your results.

 (ii) The skill you show in making use of the capabilities of the spreadsheet.

 (iii) The presentation of your results. We have deliberately not provided any instructions
concerning layout or formatting and example graphs may lack labels and proper
scales.

Years of study were finished; a degree majoring in Computer Science achieved with
minors in Video Production and English Literature; many hours spent playing
computer games. It was now or never. The group of four friends had financial support
and agreed that they would live cheaply, work in one of their parent’s basements, and
devote their time to developing the greatest computer game yet written.

Your task is to do the financial analysis to reassure their financier that they have a
good chance of making a large profit. Financial details are as follows:

• The project begins at the start of January 2011. You should calculate financial
results monthly for 10 years (until December 2020).

• The four friends will each receive salaries of $1000 per month, for the months
taken to develop the game. After that time they will receive no salary (but may
share in profits).

• The money for salaries will be borrowed from the financial backer and paid to the
friends at the start of each month.

• The project will be charged interest on the outstanding loan at the end of each
month. The interest charged will be at the rate of 15% per annum (per year) on
the balance of the loan as at the end of the prior month. Interest costs will be
added to the outstanding loan.

• All money made from selling the game will go to repayment of the loan, until it is
fully repaid. Further money earned will be all profit.

For example: In the first month (Jan 2011), $4,000 is borrowed, there is no interest
payment, and no sales, so the project owes the backer $4,000 at the end of the
month. At the end of Feb 2011, a further $4,000 has been borrowed, there is an
interest charge of $50 (at 15% per annum on the balance at the end of Jan), so the
total loan reaches $8050.

It is expected that the game will take 12 months to develop. Sales will begin in the
following month. The friends estimate that sales of their game will be 100 in the first
month and increase at 10% per month after that (110 in the second month, 121 in
the third, etc). The game will be sold at $49.95 per copy. For the purposes of your
simulation, you can assume that there are no other costs.

If the rate of sales continues to grow at 10% per month for a long time, profits could
be astronomical. However, the friends are realistic. No matter how good their game,
eventually someone will release something better. On the month that a better game
is released by competitors, they estimate that their sales will drop to 100 for the
month, and after then decline at 5% per month until no more are sold.

-3-

TURN OVER

You should proceed as follows in answering the question.

 (a) Build a spreadsheet which calculates the total amount of money borrowed over
the period January 2011 to December 2020. You should start with the salary
payments and then add the interest charges.

 (b) Extend your program to calculate the number of copies of the game sold and the
total income.

 (c) Extend your loan calculations to allow for repayment using income from game
sales.

 (d) Calculate the monthly profit (if any) over the period Jan 2011 to December 2020
(inclusive).

 (e) Add a graph (chart) of monthly profit against date.

 (f) Make sure your spreadsheet clearly shows the total profit (if any) earned over the
period of the project

The financier is particularly worried about the release date of a successful competing
game. In the sample graph shown below, that occurred in January 2015. If it had
occurred later, larger profits would have been made. If it occurred early enough there
might be no profit at all. You should set up your spreadsheet to make it easy to
experiment with this date and clearly see the consequences of any change.

Roughly formatted graph of monthly profit in dollars (after the loan has been repaid),
 with a competitor’s game being released in January 2015.

-4-

(Question 2 - continued on next page)

2. A question of age (Careful and Accurate Programming)

Your programming work in this question will be assessed on two criteria:

(a) Completeness and accuracy of the program.

(b) Good presentation. That is, it should make good use of programming language
facilities, be well organised, neatly laid out, and lightly commented.

Note also that this question also asks for a written answer to one question. You may
write this by hand (recommended), or use a word processor and include the file with your
results.

It was at a political meeting. A candidate was trying to explain to the audience that
the population of Hamilton is aging (ie: because people are living longer and the birth
rate is dropping, the average age of the population of Hamilton is increasing).

“Just look around the room”, she said. “What do you think is the average age of the
people here? When I first stood for council in 1967, I asked the same question at a
meeting, because I was arguing that the city needed to improve its amenities for young
people. I’ll tell you the answer I found then, but first let’s answer it here for this
group.”

Everyone looked around, and people came up with different estimates: “38”, “45”,
“42”. How could they work out their average age? The difficulty is that most people
don’t like admitting their ages in public.

Fortunately the candidate had a clever solution. She produced a calculator, tapped in
a large number and handed the calculator to the first person in the room. That
person, and then each other person in turn added their age to the number on the
screen. After everyone had added their age, the candidate subtracted the number she
had first entered and divided by the number of people. The result was the average
age – and no-one had been required to reveal their age to the others. Given this vital
information the meeting continued, but we can leave it there and concentrate on the
method used to obtain the average age.

Of course, as a computing expert, you will appreciate the possible flaws in this
method. Even if no-one tries to cheat it is still possible that:

• People might make mistakes – perhaps hitting a key twice – so a 23 year old

might enter 223.
• Someone might press the wrong key and lose the whole calculation.
• The candidate might forget the first number, or get it wrong in the final calculation.
• Someone might be missed, giving an inaccurate count for the number of people.

• If	 there	 are	 only	 two	 people	 in	 the	 room,	 there	 is	 no	 way	 of	 presenting	 an	 average	 without	
each	 person	 discovering	 the	 age	 of	 the	 other.	

Your task is to write a program to improve the process. You will write it on the
computer that you are using for the exam, but imagine it being used on a small hand-
held computer in much the same way as the calculator was used. Of course, your
program could simply ask people to enter their ages and just show the final answer,
but there was something that the people at the meeting liked about seeing the
current total, and watching their age being added, so you have been asked to follow
the same basic method. From one person’s point of view the interaction should look
something (but not exactly) like this:

 Current total: 7845
 Enter your age: 45
 New total: 7890
 Press <Enter> to clear the screen

 Current Total: 7890
 …

-5-

TURN OVER

 (a) Write a program to be used for this average age calculation. You are free to alter
the interaction as you see fit.

 (b) Write an explanation of the way in which your program avoids the flaws shown for
the calculator method, and any other potential difficulty you have considered.

You can assume that all the people in the room are honest – no-one will deliberately
enter false information; but they are all curious about the other people’s ages and will
try to determine them if they can.

-6-

(Question 3 - continued on next page)

3. Queen and pawns (Problem Solving and Programming)

 Your programming work in this question will be assessed on two criteria:

 (a) Your approach to the problem. We will be looking at your work for evidence that you
found good ways of storing the necessary data, and devised algorithms for finding
and displaying the requested results. Please hand in any notes and diagrams which
describe what you are attempting to program, even if you don’t have time to code or
complete it.

 (b) The extent to which your program works and correctly solves the problem.

This problem asks you to work out whether certain moves on a chess board are legal.
Do not worry if you are not familiar with the game of chess. There should be sufficient
explanation here to enable you to solve the problem

The game of chess is played on an 8 by 8 board of alternating black and white squares.
In the full game of chess each player has 16 pieces selected from 6 different kinds.
One player plays with black pieces and one with white. Our problem involves only

two kinds of piece: black pawns and a white queen

In our problem some number of black pawns is placed on the board. You are then
given a position for the queen and a position it might move to. Your task is to decide
whether the queen can legally make the move. Under the rules of chess, a queen can
move for any distance in any straight line along a row or column or diagonal of
squares, so long as the path over which it passes is clear of other pieces (in our case
pawns), and it stays on the board. It is legal for the queen to land on a square holding
a pawn – in that case the pawn is said to be ‘captured’.

For example with a placement as shown on the left below, the queen may move to
any of the squares ticked on the right:

-7-

Proceed as follows

(a) Write a program to read a description of a layout of pawns on a chess board. One
way of entering the data is to begin with a number to say how many pawns are on
the board, and follow it with two numbers for each pawn giving its row (1 to 8 from
top to bottom) and column (1 to 8 from left to right). For the board shown these
numbers would be entered:

 6
 2 3
 3 7
 4 3
 4 5
 6 4
 6 7

(b) Display your chess board on the screen. In text form it could look like this

+---+---+---+---+---+---+---+---+
+ + + + + + + + +
+---+---+---+---+---+---+---+---+
+ + + P + + + + + +
+---+---+---+---+---+---+---+---+
+ + + + + + + P + +
+---+---+---+---+---+---+---+---+
+ + + P + + P + + + +
+---+---+---+---+---+---+---+---+
+ + + + + + + + +
+---+---+---+---+---+---+---+---+
+ + + + P + + + P + +
+---+---+---+---+---+---+---+---+
+ + + + + + + + +
+---+---+---+---+---+---+---+---+
+ + + + + + + + +
+---+---+---+---+---+---+---+---+

(c) Accept four numbers, being the row and column for the current position of the
queen and the row and column of the position it might move to. Your program
should decide whether the move is legal. If so, it should say ‘Legal’. If not it
should say ‘Illegal”. Note that the queen’s starting square should not be one that
holds a pawn. You will find it helpful to display queen positions on screen as you
test your program. That might be done by extending your display from part (b).

