Research Publications for Michael J Mayo

Welcome to the University of Waikato research publications search. This database includes all research publications produced by the University from 1998.

Author's Publications

Publications ByMAYO, Michael J

  Search our Staff Profiles to contact our current staff members.

  • Wakes, S. J., Bauer, B. O., & Mayo, M. (2021). A preliminary assessment of machine learning algorithms for predicting CFD-simulated wind flow patterns over idealised foredunes. Journal of the Royal Society of New Zealand, 51(2), 290-306. doi:10.1080/03036758.2020.1868541

  • Gunasinghe, H., McKelvie, J., Koay, A., & Mayo, M. (2021). Comparison of pretrained feature extractors for glaucoma detection. In Proc 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) (pp. 390-394). Nice, France: IEEE. doi:10.1109/isbi48211.2021.9434082

  • Wang, H., Chepulis, L., Paul, R. G., & Mayo, M. (2021). Metaheuristic optimization of insulin infusion protocols using historical data with validation using a patient simulator. Vietnam Journal of Computer Science, 8(2), 263-290. doi:10.1142/s2196888821500111

  • Madurapperumage, E., Wang, W. Y. C., & Mayo, M. (2021). A systematic review on extracting predictors for forecasting complications of diabetes mellitus. In 2021 5th International Conference on Medical and Health Informatics (ICMHI). Virtual.

  • Wang, H., Chepulis, L., Paul, R., & Mayo, M. (2021). Optimising continuous intravenous insulin protocols using artificial intelligence. Poster session presented at the meeting of New Zealand Society for the Study of Diabetes Annual Scientific Meeting. Wellington, NZ.

  • Wang, H., Chepulis, L., Paul, R. G., & Mayo, M. (2020). Metaheuristics for discovering favourable continuous intravenous insulin rate protocols from historical patient data. In P. Sitek, M. Pietranik, M. Krótkiewicz, & C. Srinilta (Eds.), Proc 12th Asian Conference on Intelligent Information and Database Systems (ACIIDS 2020) LNCS 12033 (pp. 157-169). Phuket, Thailand: Springer. doi:10.1007/978-3-030-41964-6_14

  • Hébert-Losier, K., Hanzlíková, I., Zheng, C., Streeter, L., & Mayo, M. (2020). The 'DEEP' landing error scoring system. Applied Sciences (Switzerland), 10(3). doi:10.3390/app10030892

  • Cherrier, N., Mayo, M., Poli, J. -P., Defurne, M., & Sabatié, F. (2020). Interpretable machine learning with bitonic generalized additive models and automatic feature construction. In A. Appice, G. Tsoumakas, Y. Manolopoulos, & S. Matwin (Eds.), Proc 23rd International Conference on Discovery Science (DS 2020), LNAI 12323 (pp. 386-402). Thessaloniki, Greece: Springer. doi:10.1007/978-3-030-61527-7_26

  • Lu, Y., Koay, A., & Mayo, M. (2020). In silico comparison of continuous glucose monitor failure mode strategies for an artificial pancreas. In K. Bach, R. Bunescu, C. Marling, & N. Wiratunga (Eds.), Proc 5th International Workshop on Knowledge Discovery in Healthcare Data (KDH 2020) Vol. 2675 (pp. 53-57). Santiago de Compostela, Spain & Virtually: CEUR Workshop Proceedings. Retrieved from http://ceur-ws.org/Vol-2675/paper8.pdf

  • Mayo, M., & Koutny, T. (2020). Neural multi-class classification approach to blood glucose level forecasting with prediction uncertainty visualisation. In K. Bach, R. Bunescu, C. Marling, & N. Wiratunga (Eds.), Proc 5th International Workshop on Knowledge Discovery in Healthcare Data (KDH 2020) Vol. 2675 (pp. 80-84). Santiago de Compostela, Spain & Virtually: CEUR Workshop Proceedings. Retrieved from http://ceur-ws.org/Vol-2675/paper13.pdf


See Also: Research Links | Student Research Theses | Research Commons

This page has been reformatted for printing.