Research Publications for Michael J Mayo

Welcome to the University of Waikato research publications search page. This database includes all research publications produced by the University from 1998.

See Also: Research Links | Student Research Theses | Research Commons

Author's Publications

Publications ByMAYO, Michael J

  Use our Online Phonebook to contact our current staff members.

  • Hebert-Losier, K., Hanzlíková, I., Zheng, C., Streeter, L., & Mayo, M. (2019). The Deep Landing Error Scoring System. In International/American Society of Biomechanics ISB/ASB 2019 (pp. 1066). Calgary, Canada.

  • Mayo, M. (2019). Improving the robustness of the glycemic variability percentage metric to sensor dropouts in continuous glucose monitor data. In N. T. Nguyen, F. L. Gaol, T. P. Hong, & B. Trawinski (Eds.), Intelligent Information and Database Systems. ACIIDS 2019 LNCS 11432 (pp. 373-384). Cham: Springer. doi:10.1007/978-3-030-14802-7_32

  • Mayo, M., & Yogarajan, V. (2019). A nearest neighbour-based analysis to identify patients from continuous glucose monitor data. In N. T. Nguyen, F. L. Gaol, T. P. Hong, & B. Trawinski (Eds.), Intelligent Information and Database Systems. ACIIDS 2019. Lecture Notes in Computer Science Vol. 11432 (pp. 349-360). Cham: Springer. doi:10.1007/978-3-030-14802-7_30

  • Daoud, M., & Mayo, M. (2018). A novel synthetic over-sampling technique for imbalanced classification of gene expressions using autoencoders and swarm optimization. In T. Mitrovic, B. Xue, & X. Li (Eds.), Proc 31st Australasian Joint Conference on Advances in Artificial Intelligence (AI 2018) Vol. LNAI 11320 (pp. 603-615). Conference held Wellington, NZ: Springer. doi:10.1007/978-3-030-03991-2_55

  • Yogarajan, V., Mayo, M., & Pfahringer, B. (2018). Privacy protection for health information research in New Zealand district health boards. New Zealand Medical Journal, 131(1485), 19-26.

  • Hirsz, M., Hunt, L., Chepulis, L., & Mayo, M. (2018). Associations between symptoms and colorectal cancer outcome in GP/hospital e-referrals. In Australasian Applied Statistics Conference. Conference held Rotorua, NZ.

  • Mayo, M., Wakes, S., & Anderson, C. (2018). Neural networks for predicting the output of wind flow simulations over complex topographies. In X. Wu, O. Y. Soon, C. Aggarwal, & H. Chen (Eds.), Proc 2018 IEEE International Conference on Big Knowledge (ICBK) (pp. 184-191). Conference held Singapore: IEEE. doi:10.1109/ICBK.2018.00032

  • Goltz, N., & Mayo, M. (2017). Enhancing regulatory compliance by using artificial intelligence text mining to identify penalty clauses in legislation. In MIREL 2017 - Workshop on 'Mining and REasoning with Legal texts', held in conjunction with the 16th International Conference on Artificial Intelligence and Law. Conference held at King’s College, London, UK.

  • Mayo, M., & Goltz, N. (2017). Constructing document vectors using kernel density estimates. In V. Torra, Y. Narukawa, A. Honda, & S. Inoue (Eds.), Modeling Decisions for Artificial Intelligence. MDAI 2017 (pp. 183-194). Cham: Springer. doi:10.1007/978-3-319-67422-3_16

  • Mayo, M., & Daoud, M. (2017). Aesthetic local search of wind farm layouts. Information, 8(2), 39. doi:10.3390/info8020039

This page has been reformatted for printing.