Research Publications for Albert C Bifet figuerol

Welcome to the University of Waikato research publications search page. This database includes all research publications produced by the University from 1998.

See Also: Research Links | Student Research Theses | Research Commons

Author's Publications

Publications ByBIFET FIGUEROL, Albert C

  Use our Online Phonebook to contact our current staff members.

  • Lobo, J. L., Del Ser, J., Bifet, A., & Kasabov, N. (2020). Spiking Neural Networks and online learning: An overview and perspectives. Neural Networks, 121, 88-100. doi:10.1016/j.neunet.2019.09.004

  • Cortez, P., & Bifet, A. (2020). Fifth special issue on knowledge discovery and business intelligence. Expert Systems, Early View. doi:10.1111/exsy.12628

  • Zhang, W., & Bifet, A. (2020). FEAT: A fairness-enhancing and concept-adapting decision tree classifier. In A. Appice, G. Tsoumakas, Y. Manolopoulos, & S. Matwin (Eds.), Proc 23rd International Conference on Discovery Science (DS 2020) Vol. LNAI 12323 (pp. 175-189). Thessaloniki, Greece: Springer. doi:10.1007/978-3-030-61527-7_12

  • Losing, V., Hammer, B., Wersing, H., & Bifet, A. (2020). Randomizing the self-adjusting memory for enhanced handling of concept drift. In Proc 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). Glasgow, UK: IEEE. doi:10.1109/IJCNN48605.2020.9207583

  • Mordvanyuk, N., López, B., & Bifet, A. (2020). vertTIRP: Robust and efficient vertical frequent time interval-related pattern mining. Expert Systems with Applications, In press. doi:10.1016/j.eswa.2020.114276

  • Montiel, J., Mitchell, R., Frank, E., Pfahringer, B., Abdessalem, T., & Bifet, A. (2020). Adaptive XGBoost for evolving data streams. In Proc 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). Glasgow, UK: IEEE. doi:10.1109/IJCNN48605.2020.9207555

  • Bahri, M., Pfahringer, B., Bifet, A., & Maniu, S. (2020). Efficient batch-incremental classification using UMAP for evolving data streams. In M. R. Berthold, A. Feelders, & G. Krempl (Eds.), Proc Advances in Intelligent Data Analysis IVIII: 18th Symposium on Intelligent Data Analysis (IDA 2020) Vol. LNCS 12080 (pp. 40-53). Konstanz, Germany: Springer. doi:10.1007/978-3-030-44584-3_4

  • del Campo-Ávila, J., Takilalte, A., Bifet, A., & Mora-López, L. (2020). Binding data mining and expert knowledge for one-day-ahead prediction of hourly global solar radiation. Expert Systems with Applications. doi:10.1016/j.eswa.2020.114147

  • Carnein, M., Trautmann, H., Bifet, A., & Pfahringer, B. (2020). confstream: automated algorithm selection and configuration of stream clustering algorithms. In I. S. Kotsireas, & P. M. Pardalos (Eds.), Proc 14th International Conference on Learning and Intelligent Optimization (LION 2020) Vol. LNCS 12096 (pp. 80-95). Athens, Greece: Springer. doi:10.1007/978-3-030-53552-0_10

  • Lobo, J. L., Oregi, I., Bifet, A., & Del Ser, J. (2020). Exploiting the stimuli encoding scheme of evolving Spiking Neural Networks for stream learning. Neural Networks, 123, 118-133. doi:10.1016/j.neunet.2019.11.021

This page has been reformatted for printing.