Research Publications for Michael J Mayo

Welcome to the University of Waikato research publications search page. This database includes all research publications produced by the University from 1998.

See Also: Research Links | Student Research Theses | Research Commons

Author's Publications

Publications ByMAYO, Michael J

  Use our Online Phonebook to contact our current staff members.

  • Podolskiy, V., Mayo, M., Koay, A., Gerndt, M., & Patros, P. (2019). Maintaining SLOs of cloud-native applications via self-adaptive resource sharing. In Proc 13th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2019) (pp. 72-81). Umeå, Sweden: IEEE. doi:10.1109/SASO.2019.00018

  • Mayo, M., & Yogarajan, V. (2019). A nearest neighbour-based analysis to identify patients from continuous glucose monitor data. In N. T. Nguyen, F. L. Gaol, T. P. Hong, & B. Trawinski (Eds.), Intelligent Information and Database Systems. ACIIDS 2019. Lecture Notes in Computer Science Vol. 11432 (pp. 349-360). Cham: Springer. doi:10.1007/978-3-030-14802-7_30

  • Mayo, M. (2019). Improving the robustness of the glycemic variability percentage metric to sensor dropouts in continuous glucose monitor data. In N. T. Nguyen, F. L. Gaol, T. P. Hong, & B. Trawinski (Eds.), Intelligent Information and Database Systems. ACIIDS 2019. Lecture Notes in Computer Science Vol. 11432 (pp. 373-384). Cham: Springer. doi:10.1007/978-3-030-14802-7_32

  • Daoud, M., & Mayo, M. (2019). A survey of neural network-based cancer prediction models from microarray data. Artificial Intelligence in Medicine, 97, 204-214. doi:10.1016/j.artmed.2019.01.006

  • Yogarajan, V., Mayo, M., & Pfahringer, B. (2018). Privacy protection for health information research in New Zealand district health boards. New Zealand Medical Journal, 131(1485), 19-26.

  • Mayo, M., Wakes, S., & Anderson, C. (2018). Neural networks for predicting the output of wind flow simulations over complex topographies. In X. Wu, O. Y. Soon, C. Aggarwal, & H. Chen (Eds.), Proc 2018 IEEE International Conference on Big Knowledge (ICBK) (pp. 184-191). Conference held Singapore: IEEE. doi:10.1109/ICBK.2018.00032

  • Daoud, M., & Mayo, M. (2018). A novel synthetic over-sampling technique for imbalanced classification of gene expressions using autoencoders and swarm optimization. In T. Mitrovic, B. Xue, & X. Li (Eds.), Proc 31st Australasian Joint Conference on Advances in Artificial Intelligence (AI 2018) Vol. LNAI 11320 (pp. 603-615). Conference held Wellington, NZ: Springer. doi:10.1007/978-3-030-03991-2_55

  • Hirsz, M., Hunt, L., Chepulis, L., & Mayo, M. (2018). Associations between symptoms and colorectal cancer outcome in GP/hospital e-referrals. In Australasian Applied Statistics Conference. Conference held Rotorua, NZ.

  • Mayo, M., & Frank, E. (2018). Improving Naive Bayes for Regression with Optimised Artificial Surrogate Data. arXiv. Retrieved from http://arxiv.org/pdf/1707.04943v3

  • Goltz, N., & Mayo, M. (2017). Enhancing regulatory compliance by using artificial intelligence text mining to identify penalty clauses in legislation. In MIREL 2017 - Workshop on 'Mining and REasoning with Legal texts', held in conjunction with the 16th International Conference on Artificial Intelligence and Law. Conference held at King’s College, London, UK.

This page has been reformatted for printing.