Breadcrumbs

Professor Eibe Frank

Eibe Frank

Professor (Computer Science)

Qualifications: Dipl-Inf Karlsruhe PhD Waikato

Personal Website: http://www.cs.waikato.ac.nz/~eibe/

Research Interests

Professor Frank is a computer scientist whose primary area of interest is machine learning and its applications. He is a core developer of the WEKA machine learning software and has more than 100 publications on machine learning methods and their application to data mining, text mining, and areas of research outside computer science.

Recent Publications

  • Bravo-Marquez, F., Frank, E., Pfahringer, B., & Mohammad, S. M. (2019). AffectiveTweets: a Weka package for analyzing affect in tweets. Journal of Machine Learning Research, 20, 1-6. Retrieved from http://jmlr.org/papers/v20/18-450.html Open Access version: https://hdl.handle.net/10289/12617

  • Leathart, T., Frank, E., Pfahringer, B., & Holmes, G. (2019). Ensembles of nested dichotomies with multiple subset evaluation. In Q. Yang, Z. -H. Zhou, Z. Gong, M. -L. Zhang, & S. -J. Huang (Eds.), Advances in Knowledge Discovery and Data Mining: Proc 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2019), LNCS 11439 Vol. Part I (pp. 81-93). Cham: Springer. doi:10.1007/978-3-030-16148-4_7

  • Gouk, H., Pfahringer, B., & Frank, E. (2019). Stochastic gradient trees. In W. S. Lee, & T. Suzuki (Eds.), Proc 11th Asian Conference on Machine Learning (ACML 2019) Vol. PMLR 101 (pp. 1094-1109). Nagoya, Japan: PMLR. Retrieved from http://proceedings.mlr.press/v101/gouk19a.html

  • Lang, S., Bravo-Marquez, F., Beckham, C., Hall, M., & Frank, E. (2019). WekaDeeplearning4j: A deep learning package for weka based on Deeplearning4j. Knowledge-Based Systems. doi:10.1016/j.knosys.2019.04.013

Find more research publications by Eibe Frank

Keywords

Data mining; Machine Learning


Contact Details

Name  Extn.  Username  Room  Department
Frank, Prof Eibe 4396 eibe G.2.18 Computer Science

You can contact staff by:
  • Calling +64 7 838 4466  select option 1, then enter the extension
  • Extensions starting with 4, 5, 9 or 3 can also be direct dialled:
    • For extensions starting with 4: dial +64 7 838 extension
    • For extensions starting with 5: dial +64 7 858 extension
    • For extensions starting with 9: dial +64 7 837 extension
    • For extensions starting with 3: dial +64 7 2620 + the last 3 digits of the extension  e.g. 3123 = +64 7 262 0123
  • Emailing username@waikato.ac.nz
  • Using the campus map to locate their room