Research Topics

This page provides outline descriptions of (ENGEN582/Masters/PhD) research topics that I currently have available.

A 900-level (PhD) project typically requires about 7000 hours, typically 3 and a half years full-time, or 7 years half-time. An ME project (500-level) will take about 2000 hours, and must be completed in one calendar year. A Capstone project (400-level) requires 450 hours. A Special Topic project (equivalent to a 300-level) typically requires 150 hours. An internship project demands 10 to 12 working weeks, or about 400 hours.

Projects do not come with any stipend or salary unless specifically stated otherwise.

Last updated 11/8/2019, 2:41:35 PM

- **Prediction of State-of-Charge in Rechargeable Batteries using a CPE Model**

 This is a 900-level (PhD) project. Applicants for PhD should have a research masters.

 We have recently shown that a battery may be modelled essentially by a fractional-derivative capacitor or "Constant Phase Element". While the model matches V(Q) data, complex impedance, and recovery transients from current pulses, the ultimate aim is to predict remaining available energy.

- **Low Distortion Circuit Design**

 This could be a 500-level (45-point Honours) investigation or a 500-level (Masters) project

 The ETI480 50W power amplifier served musicians and hifi aficionados for decades. Amongst its elegant design innovations was a nested loop around Sziklai pairs as the output current-gain stage. This project will answer the questions "is linearity better overall using Sziklai pairs compared to Darlington pairs?" and "is linearity better overall with a nested loop around the power output stage?"

- **Audio Frequency Power Meter**

 This could be a 500-level (45-point Honours) investigation or a Special Topics project.

 The aim of this project is to build a power meter that measures real and reactive power
in the audio frequency range. The expectation is to design a version of an ETI-138 Audio Power Meter (Nov 1978) using an AD633 multiplier from Analog Devices.

- **SPICE Model of a BC547**

 This could be a 500-level (45-point Honours) investigation or a 500-level (Masters) project.

 The BC547 has been around a long time. A detailed SPICE model has been available for over 40 years, but the values do not seem to be consistent over time. This is likely to be a result of changes in the silicon fab technology. This project aims to obtain values on a single transistor for the majority of the SPICE parameters. A point of interest will be comparing them with values obtained in the 1970s.

- **Vacuum-tube Characterisation System**

 This could be a 500-level (45-point Honours) investigation or a Masters project,

 The task is to assemble two programmable power supplies into a system for characterising vacuum triodes, and then measure some tube characteristics with a view to testing various available models on precise, modern data. The task is to control the system with a small controller, such as a Raspberry Pi, using USB and RS232 interfaces, and deliver compact data files.